
r

-

Introduction to
GEMTM Programming

Introduction to

GEMTM Programming

5074 • 2243 • 001

COPYRIGHT

Copyright © 1986 Digital Research Inc. All rights reserved. No part of this publication
may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, electronic,.
mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written
permission of Digital Research Inc., 60 Garden Court, P.O. Box DRI, Monterey, California
93942.

DISCLAIMER

DIGITAL RESEARCH INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.
Further, Digital Research Inc. reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of Digital Research
Inc. to notify any person of such revision or changes.

NOTICE TO USER

This manual should not be construed as any representation or warranty with respect to
the software named herein. Occasionally changes or variations exist in the software
that are not reflected in the manual. Generally, if such changes or variations are known
to exist and to affect the product significantly, a release note or READ.ME file
accompanies the manual and distribution disk(s). In that event, be sure to read the
release note or READ.ME file before using the product.

TRADEMARKS

Copyright © 1986. Digital Research and its logo are registered trademarks of Digital
Research Inc. Graphics Environment Manager, GEM and its logo, GEM Desktop,
Concurrent, GEM Paint, and GEM Draw are trademarks of Digital Research. Intel is a
registered trademark of Intel Corporation. Motorola is a registered trademark of
Motorola Incorporated.

Second Edition: June, 1986

Foreword

The GEMTM (Graphics Environment Manager™) programming
environment provides two sets of functions for controlling graphics
device output and pointing device and keyboard input. You access the
functions through calls to the GEM entry point. The GEM Developer
I\it includes C-Ianguage bindings to facilitate calling the functions and
to help you develop portable programs. The kit also provides a GEM
resource construction program, a series of C-Ianguage include files,.
and a symbolic instruction debugger.

GEM Documentation Set

• Introduction to GEM Programming: An overview of the GEM
function sets--the Application Environment Services and Virtual
Device Interface--with program examples demonstrating their use.

• GEM Desktop ™ manual: The end user's guide to GEM Desktop
features and operation.

• GEM Virtual Device Interface Reference Guide: The description of
the GEM Virtual Device Interface (VOl) functions. This book is
referred to as the VOl Reference Guide.

• GEM Application Environment Services Reference Guide: The
description of the GEM Application Environment Services (AES)
functions. This book is referred to as the AES Reference Guide.

• GEM Programmer's Utilities Guide: The description of the GEM
RCS resource construction program, the symbolic instruction
debugger, and the file transfer program provided in the GEM
Developer Kit. Different versions of this book are provided for
systems based on different microprocessors.

An understanding and appreciation of the GEM programming
environment is best learned through use. Begin your introduction with
the GEM Desktop manual, which provides GEM installation instructions,
tu10rials, and descriptions of the display features and input device
handling.

iii

When you are familiar with GEM operation, read the Introduction to
GEM Programming. This book reviews the GEM interface
characteristics, describes the system components, and gives program
examples you can use in your program. Before proceeding with
application development, read the GEM RCS description in the GEM,
Programmer's Utilities Guide. GEM RCS is a sophisticated tool that can
save .hours in program development time.

The VOl Reference Guide and AES Reference Guide contain the
function descriptions. Refer to them during program development for
argument and return value descriptions. In addition to the function
descriptions, the VOl Reference Guide also provides the VOl error
messages, metafile file format and reserved subcodes, standard
keyboard values, character sets and font files, and bit image file
format.

Intended Audience

This book is intended for experienced programmers. Formal education
in graphics programming is helpful but not required to develop GEM
applications and accessories. Familiarity with the C programming
language is also helpful but not required.

Contents

This book has three sections.

Section 1 describes the GEM graphics features and summarizes the
AES and VOl functions.

Section 2 provides background information that can affect application
development.

Section 3 describes common GEM programming tasks and describes
how to perform them with the 'AES and VOl functions.

Before proceeding, copy the disks provided in the GEM Developer Kit
on your system and install the GEM RCS application. Store the original
disks in a safe place.

iv

Contents

1 GEM Graphics Features and Functions
1.1 AES ,. 1-2

1.1.1 Menu Bar. 1-2
1.1.2 Desktop Window. 1-3
1.1.3 Application Windows. 1-4
1.1.4 Dialog Boxes and Forms. 1-8
1.1.5 Objects and Object Trees. 1-10
1.1.6 User Input and AES Events. 1-13
1.1.7 AES Function Libraries .. 1-13

1.2 VOl.. 1-17
1.2.1 Workstation Control Functions 1-18
1.2.2 Output Functions. .. 1-18
1.2.3 Attribute Functions .. 1-19
1.2.4 Raster Operation Functions. 1-20
1.2.5 Input Functions. .. 1-20
1.2.6 Inquiry Functions. .. 1-20
1.2.7 Escape Functions. .. 1-20

2 GEM Components and System Interface
2.1 System and Device Characteristics. 2-1
2.2 GEM Components. 2-2

2.2.1 AES Components . 2-2
2.2.2 Desk Accessories . 2-4
2.2.3 Application Space . 2-5
2.2.4 VOl Components. 2-5

2.3 Component Relationships. 2-6
2.4 Normalized Device and Raster Coordinate Systems. 2-7
2.5 Porting Applications to Different Environments. 2-9
2.6 Reserved Files. .. 2-10
2.7 Enabling Graphics. 2-12

v

Contents

3 Application Programming Tasks and Examples
3.1 Application Planning
3.2 DEMO Overview '
3.3 Program Initialization
3.4 Event Management

3.4.1 Button Handling
3.4.2 Mouse Handling
3.4.3 Message Handling
3.4.4 Keyboard Handling and Text Output

3.5 Menu Processing
3.6 Form Processing
3.7 Work Area Maintenance
3.8 Program Termination
3.9 Creating Accessories

3-1
3-2
3-3
3-9·

3-12
3-15
3-16
3-18
3-20
3-22
3-30
3-41
3-42

Tables

1-1 Window Control Areas. 1-6
1-2 AES libraries and Function Summaries. 1-14
2-1 Reserved GEM Files. .. 2-11

"Figures

vi

1-1 Menu Bar, Drop-down Menu, and Desktop Window. 1-3
1-2 Application Window Components. 1-5
1-3 Relationship of View Area to World Coordinate Space. . . 1-8
1-4 Dialog Box as Form. 1-9
1-5 Dialog Box and Panel. .. 1-10
1-6 Raw Object Form of Figure 1-4. 1-11
1-7 Object Tree Pointers. .. 1-12
1-8 VDI Output Functions. .. 1-19
2-1 GEM Components in System Memory 2-3
2-2 GEM Component Relationships . 2-6
2-3 Normalized Device Versus Raster Coordinates. 2-8
2-4 Aspect Ratio Conversion . 2-9
3-1 OBJECT Structure .. 3-23
3-2 DEMO Pen/Eraser Selection Dialog Box 3-25
3-3 Window Rectangles. .. 3-33

Contents

Listings

3-1 Opening Virtual Workstation. 3-4
3-2 Transforming Objects and Initializing APPLBLK Structures 3-6
3-3 Object Transformation. . .. 3-7
3-4 Set-up Message Buffer and Screen 3-9
3-5 Main Event Loop .. 3-11
3-6 Button Handling. .. 3-13
3-7 Mouse Handling. .. 3-15
3-8 Message Handling .. 3-17
3-9 Checking for CTRL-C and Setting Text Attributes. 3-19
3-10 Character Output. .. 3-20
3-11 Menu Handling , 3-21
3-12 Setting the Dialog Box's Current Selections. , 3-26
3-13 Display and Processing of a Dialog Box. 3-27
3-14 Getting Data and'Resetting SELECTED Flag . , 3-28
3-15 Save Work Area , 3-31
3-16 Redrawing a Portion of the Screen 3-34
3-17 WM _SIZED and WM _MOVED Message Responses. 3-36
3-18 WM _FULLED Message Response. 3-37
3-19 Arrow and Slider Message Responses. 3-39
3-20 Updating the undo _mfdb, Sliders, and Screen. 3-40
3-21 Program Termination Routine , 3-42
3-22 HELLO Event Handler , 3-45

vii

SECTION 1

GEM Graphics Features and Functions

The GEM programming environment provides applications with
graphics features such as drop-down menus, windows, icons, and
dialog boxes for managing the user interface. The program interface
has two components:

• Application Environment Services (AES): Sets of functions that
manage screen output and mouse and keyboard input .

• Virtual Device Interface (VOl): An extensive collection of device
independent functions that manage the interface to the physical
graphics devices.

The GEM components do not replace the computer's operating system;
they supplement the operating system's functions with the AES and
VOl functions. Applications use the operating system for file
management and the GEM functions to manage user input and
graphics device output.

The GEM software runs on computers from many manufacturers and
under several operating systems. With careful use of the AES and VOl
functions in languages such as C or Pascal, you can produce programs
that are portable between systems supporting the GEM environment.

Note: The AES supports a variety of pointing devices. For convenience,
'Imousefl is used in this manual to refer to all types of pointing
devices. The on-screen representation of the pointing device's location
is called the mouse form.

1-1

1.1 AES Introduction to GEM Programming

1.1 AES

The AES is composed of twelve function libraries. (The term "library" in
this context means, "a set of related functions.") Each library addresses
a different aspect of the AES programming interface. For example,
Form library functions attend to the display and processing of dialog'
boxes and other types of user-interactive forms; Window Library
functions control the creation, display, and inquiry of windows; and
Event Library functions monitor user input, message input, and timer
events. Section 1.1.7 lists the libraries and the functions in each.

The AES interface to the screen has two fundamental components: the
menu bar and the desktop window. Figure 1-1 illustrates the relative
positions of the menu bar and desktop window on the screen. This
figure also shows how a drop-down menu is displayed on the desktop
window portion of the screen.

Note: The expression "desktop window" refers to the window created
by the AES that serves as the backdrop for its windowing system. Do
not confuse the desktop window with the GEM Desktop. The latter is
an application that creates its own windows on the desktop window.

1.1.1 Menu Bar

The menu bar is a reserved area of the screen managed by the AES.
The entries in the menu bar, for example, Files, Options, and Accs in
Figure 1-1, are called titles. The boxes displayed below titles are called
drop-down menus. The entries in drop-down menus are called items.
The title on the far right (Accs in the figure) is always the desk
accessory menu. (See Section 2.2.2 for the description of desk
accessories.)

The AES manages mouse and button input and the window display
while the mouse form is in the menu bar. As soon as the mouse form
enters the menu bar, the AES converts it to an oblique arrow. When
the user moves the mouse over a title, the AES converts the title to
reverse video and displays the title's drop-down menu. After the user
clicks on a selection, the AES redraws the screen but leaves the title
in reverse video. It is the application's responsibility to return the
mouse form to its application-defined· form and convert the title back
to normal video in its menu handling routine.

1-2

Introduction to GEM Programming

Desktop
window

•••••••• Close
Save
Save as ••.

Drop-down menu with. items

1.1 AES

Accessory

Figure 1-1. Menu Bar, Drop-down Menu, and Desktop Window

The menu bar is blank until you provide the contents. You use Menu
Library functions to control the contents. The functions allow you to
display and remove a set of titles and drop-down menus, enable and
disable titles and items, check selected items, register and unregister
desk accessories in the accessory menu, and change menu item text.
You construct sets of titles and their drop-down menus with the GEM
ReS application.

1.1.2 Desktop Window

The desktop window is the portion of the display surface below the
menu bar. This area is the total space available to you for display
output. You can output directly to the desktop window, however, the
standard practice is to create an application window.

All windows are identified by a unique value called the handle. The
AES manages window handle assignments. The desktop window handle
is always zero.

1-3

1.1 AES Introduction to GEM Programming

You get the size of the desktop window with an AES Window Library
function. The function returns the width and height as the number of
pixels (picture elements) along the window's x and y axes. The desktop
window's coordinate addressing system has its origin point (x = 0 and
y = 0) in the upper lefthand corner. You reference individual pixels by
their x and y coordinates relative to this point. See Section 2.4 for'
more about coordinate systems.

1.1.3 Application Windows

An application window is the portion of the desktop window reserved
by the program for its use. You can make an application window as
big as the desktop window, however, an application window cannot be
larger. You create and manage application windows with AES Window
Library functions. You can create multiple application windows and
they can overlap.

The AES manages up to eight windows. Because the desktop window
is always present and cannot be deleted, seven windows are available
to the application. Be careful in your window use, however. If your
application creates seven windows, no desk accessories (which each
require their ,own window) can be run until a window has been
deleted. Note that closing a window does not delete it.

Application Window Components

An application window is composed of selectable border components
and a work area. You select the border components and specify the
window area and location when you create the window. The AES
displays the border components selected within the window area
requested. The space remaining becomes the application window's
work area. Figure 1-2 shows an application window with all border
components.

The border components fall into two groups: informational and control.
The informational components are a title bar and an information line.
The title bar is an area one character-cell high displayed across the
top of the window. The information line appears right below the title
bar and ~s also one character-cell high. You output the title bar and
information line contents with Window library functions. The longest
possible string is 80 characters for each. However, the actual number
available depends on the window width and character size.

1-4

Introduction to GEM Programming 1.1 AES

The window control areas are individually selectable boxes, bars, and
scroll bars with sliders that give the user the ability to manipulate the
application window's size, location, and view area. (The view area is
described later on in this section.) Table 1-1 lists the window control
areas available.

Note: The AES does not require you to respond in a specific fashion
when the user clicks on a window. control area. The responses listed in
Table 1-1 are recommended responses consistent with the responses
in other GEM applications.

Close
Box ,
HI

~ t: j

t
Left
Arrow

Title Bar and Move Bar ,
t

Information Line

Application Window
Work Area

Horizontal
t

scroll bar
and slider

Full
Box

l
• ..

Up arrow / .~:

Vertical scroll -..
bar and slider

Down arrow
ffi::
Fl-,

1"""":1 ~ ••• 11 ••••

I
Right
Arrow

I

Size
Box

,Figure 1-2. Application Window Components

1-5

1.1 AES Introduction to GEM Programming

Table 1-1. Window Control Areas

Component Program Response

Arrows (T A -4 ~) Change the window's view area by one
program-defined increment.

Close box Close the window or perform a concluding action
consistent with the window's function.

Full box Toggle window between present size and greatest
possible size.

Move bar Relocate the window.

Note: There is no distinct move bar. This feature
is given to the title bar when the move bar
attribute is selected. You must give the title bar a
name for the move bar function to work.

Scroll bar and slider

Size box

Change the window's view area horizontally
and/or vertically by a program-defined page or to
the user-selected Jocation.

Change the size of the window to the user
selected height and width.

The window control areas, like the menu bar, are reserved areas in
which the AES monitors button and mouse input. Unlike the menu bar,
however, the AES does not change the mouse form when it enters the
control areas. If you want the mouse form to change when it enters
the window control areas, the application must change it.

1-6

Introduction to GEM Programming 1.1 AES

Work Area

The application window's work area is the rectangle enclosed by the
window control areas. The size and location of the work area can vary
during program operation depending upon the user's use of the size
and move boxes. You get the location and dimensions of the work
area with the Window Library's wind_get function.

The application window work area defines the area in which the
application controls user input and screen. output. You manage user
input with the AES Event and Form Library functions. You manage the
screen output with the AES Window, Object, Graphics, and Extended
Graphics Library functions and the VOl output and attribute functions.

View Area
t.

The view area is the portion of the world coordinate space shown in
the application window's work area. The world coordinate space is the
application's total addressable window data area. The user controls the
portion of the world coordinate space shown in the view area with the
arrows, scroll bars, and sliders. If you do select these window control
areas the user cannot change the view area.

The size of the view area changes with the size of the application
window work area and any scaling capability provided in the
application. If you do not specify a size box, the user cannot change
the size of the application window work area.

The scroll bar and slider provide the visual representation of the view
area location and size with respect to the world coordinate space.
Figure 1-3 illustrates these components and their relationship. The AES
controls the actual display of the scroll bar and slider, however, the
application must tell the AES the slider's size and location.

You manage the slider size and location with Window Library wind set
function. To set the slider size, you designate the proportion of -the.
scroll bar filled by slider as a value between 1 and 1000 where 1
specifies the smallest slider size and 1000 specifies a slider that fills
the scroll bar. To set the horizontal and vertical slider locations,' you
designate the position of the horizontal slider's left edge or the
vertical slider's top edge relative to the scroll bar where 1 is the
left/top of the scroll bar and 1000 is the right/bottom.

1-7

1.1 AES

User controls
view area of
world coordi
nate space
with slider,
scroll bar, and
arrows.

Slider size shows
proportion of
view area to
world coordinate
space.

Introduction to GEM Programming

- -- - -
- -

I~~~~~l ' Ij~jjjjj~j~j~j~j~jljlllll~ljl~~ll~l~ll
1 1000

Horizontal scroll
bar and slider

~tttt 1

0
, 'Vertical

, scroll
: bar and

, slider

tj~tj~t~ 1000

Application controls
slider size and must
compensate when
user changes
window size.

Figure 1-3. Relationship of View Area to World Coordinate Space

1.1.4 Dialog Boxes and Forms

The AES Form and Object Libraries provide functions for handling
dialog boxes. Dialog boxes are rectangles within which you can mix
different types of text- and graphics-objects in any combination and
format. The rectangle can be any size up to the full desktop window.
There are two general types of dialog boxes: transient displays that
collect specific information and on-going fixtures of the application
window.

Transient dialog boxes, called forms, are distinguished by two
characteristics: they limit user interaction to the form and they have
exit buttons. To the user, the program enters a mode when a form is
displayed. Menu bar and window control options are not available until
the user selects an exit button. Figure 1-4 shows a form.

Dialog boxes that are on-going fixtures typically do not have the
restrictions of the form. That is, the user is free to move into and out
of the dialog box without selecting an exit button to leave. In
comparison to the form, this type of dialog box is modeless. Figure
1-5 shows two modeless dialog boxes.

1-8

Introduction to GEM Programming 1.1 AES

Note: Both of the following figures are taken from the GEM ReS
application. See the GEM Programmer's Utilities Guide for the
description these dialog boxes and panels.

LOCKED, NORMAL, and
EXPERT options
demonstrate radio
button flag attribute.
If user selects LOCKED,
NORMAL is deselected.

OK and Cancel are exit
buttons. User must click
on one or the other to
leave the form.

Resource File Editing Protection:

I lOCKED I Objects May be edited, sized,
or Moved, but the object tree
structure May not be changed.

I EXPERT I

A warning is given before the
workspace is cleared or trees
are rearranged.

No warnings are given ~Ihen
trees are altered or the
workspace is cleared.

OK I cancel!

Figure 1-4. Dialog Box as Form

The dialog box above contains three options and two exit buttons.
The three options have the radio button flag attribute. This means that
only one option can be selected at a time. Other general types of
options are check boxes, where the user can select any combination of
options, and editable text boxes.

Typically, you remove the form when the user is through with it.
Unlike drop-down menus, the AES does not automatically redraw the
screen when the user selects an exit button; it is the application's
responsibility to remove the dialog box.

Figure 1-5 shows a dialog box along the left side of the figure and a
,variation of the dialog box called a panel along the bottom. Dialog
boxes and panels are functionally similar, however, panels give you a
bit more flexibility for arranging the objects within the box.

The dialog· box below is composed largely of bit image objects. This
type of object and the icon type are the most complex to create but
gives you the ability to ,set the object's appearance pixel-by-pixel. The
other object types, such as graphics boxes, graphics text, and buttons,

1-9

1.1 AES Introduction to GEM Programming

have specific shapes and contents. The panel along the bottom of the
figure illustrates all of the object types available for constructing
dialog boxes and panels.

The rectangle to the left is a dialog box. The rectangle
along the bottom is a panel. Dialog boxes and panels are
similar in many ways; for example, you construct both
with the objects shown in the panel. Panels, however,
offer a bit more latitude for object positioning.

I BUTTON I STRING EDIT: __ I=ED.;;...;...IT:~_

TEXT [1J I BOXTEXT I [10]

Figure 1-5. Dialog Box and Panel

1.1.5 Objects and Object Trees

You build dialog boxes, panels, menu bar titles and drop-down menus,
and special dialog boxes called alert boxes with objects. An object is a
structure describing the contents of a rectangular portion of the
screen. Figure 1-6 below shows the dialog box in Figure 1-4 in its raw
object form. The objects appear in the figure as they do before the
object text is edited.

Every object has an OBJECT structure. The OBJECT structure defines
the object's size, location, flags, state, and other variables. Figure 3-1
illustrates the OBJECT structure format. See the description of the

1-10

Introduction to GEM Programming 1.1 AES

Object Library functions in the AES Reference Guide for the description
of the object attribute flags and object states.

String

Button String
String
String

Button String
String
String

Button String
String
String

Button II Button

Figure 1-6. Raw Object Form of Figure 1-4

The objects in a menu bar and its drop-down menus, dialog box,
panel, and alert box are linked in an array of OBJECT structures called
an object tree. Each tree has a starting object called the root. The
remaining objects are linked· through three' types of pointers
maintained in each OBJECT structure. The types are defined as follows:

• the object's first child--a head object
• the object's last child--a tail object
• the object's next sibling or, if there's no sibling, its parent

The pOinter is the index of the object's OBJECT structure relative to
the tree's root object. Figure 1-7 shows the object pointers of the
dialog box shown in Figure 1-4.

You use GEM RCS to create object trees. GEM RCS records the trees
in a resource file. The Resource Library provides functions for loading
a resource file and getting the address of a tree's root object. You use
the root object' address to display the tree and process user
interaction with Object and Form Library functions.

1-11

1.1 AES Introduction to GEM Programming

The use of object trees is an important aspect of GEM application
programming. The Object library description in the AES Reference
Guide explains the OBJECT and related data structures. Section 3.6
contains demonstrations of Object and Form library function use for
the display and processing of object trees.

1-12

Root

C1
[c·2··············1
i~3 i. · . : :

1~4 I · . · . : :

IDs j · . · .
. L.1

C6
C7
C8

C9
C10
C 11

C12
C13
C14

~~

Next

:;; C2 ~~xtN.xt
C3 • C4 • C5 . Next Next

Head Tail Next

Root C1 C16 -
C1 - - C2
C2 C3 C5 C6
C3 C4
C4 C5
C5 C2
C6 C7
C7 C8

C'15 C16
C16 Root

Root

• C7- ... - C15~ C16

Only parent objects have
pointers to first and last
child objects. The root is
the only parent without a
pointer to the next object.

Figure 1-7. Object Tree Pointers

Introduction to GEM Programming 1.1 AES

1.1.6 User Input and AES Events

The AES provides functions for monitoring three input devices: the
keyboard, a mouse, and mouse buttons. The AES reports user input
from these devices through an event and message system.

Note: The VOl includes a set of input functions. However, use the AES
input functions only for all GEM applications.

You use the AES Event Library to manage the event and message
system. The library supports the following input events:

• one or more state changes on one or more mouse buttons
• keyboard entry
• mouse form movement into or out of a designated region
• receipt of a message
• expiration of a time interval

The AES uses the message system to report input events occurring
while the mouse form is outside the application window's work area
and application window status changes. Each message indicates the
event that occurred and provides related data.

Note: You can also use the message system to transfer data between
different applications, between an application and an accessory, and
from an application to itself. In these cases, you use Application
Library functions to read and write the message.

1.1.7 AES Function Libraries

There are twelve AES function libraries. Each one provides services for
managing a different aspect of the graphics environment. Table 1-2
lists the functions in each library.

1-13

1.1 AES Introduction to GEM Programming

Table 1-2. AES Libraries and Function Summaries

Application Library: Application initialization and intercommunication

appl_bvset

appl_exit

appl_find

appUnit

appl_read

appl_tplay

appl_trecord

appl_write

appl_yield

Set the disk configuration.

End application execution and release memory.

Return identification number of another application.

Establish application's internal data structures and return

application's identification number.

Read from a message pipe.

Play recording of user input.

Record user input.

Write to a message pipe.

Force a dispatch.

Event Library: Input and event management

evnt_button

evnt_dclick

evnt_keybd

evnt_mesag

evnt_mouse

evnt_multi

evnt_timer

Wait for button input.

Set/get double-click time period.

Wait for keyboard input.

Wait for a message.

Wait for the mouse form to enter or leave a region.

Wait for any of the above events to occur.

Wait for a time interval to pass.

Menu Library: Menu bar display and contents management

menu bar

menu icheck

menu_ienable

menu_register

menu_text

menu_tnormal

Display or remove application's menu bar.

Display or erase check next to an item.

Display item in full or reduced intensity.

Add text string to desk accessory menu.

Change text in an item.

Display title in normal or reverse video.

menu_unregister Remove text string from desk accessory menu.

1-14

Introduction to GEM Programming 1.1 At::s

Table 1-2. Continued

Object Library: Object tree display and object management

objc_add

objc _change

objc _delete

objc_draw

objc_edit

objc_find

objc_offset

objc_order

Add an object to a tree.

Change object state.

Delete an object from a tree.

Draw an object tree.

Edit text in an object.

Return index of object at current mouse form location.

Return object location relative to screen.

Change object order in a tree.

Form Library: Form display and input management

form alert

form button

form center

form_dial

form do

form error

form_keybd

Display an alert box.

Process button input.

Center a pia log box in the work area.

Reserve or free work area space for a dialog box.

Process a user-interactive form.

Display an error box.

Process keyboard input.

Graphics Library: Rectangle draw and move

graf_dragbox

graf_handle

graf_mbox

graf_mkstate

graf_mouse

graf _rubbox

graf _slidebox

graf_watchbox

Draw rectangle that moves with mouse input.

Get workstation handle assigned by VOL

Draw rectangle that moves from one location to another.

Return mouse location and button state and keyboard state.

Change mouse form.

Draw rectangle that expands or contracts with mouse input.

Move rectangle within another rectangle according to mouse

input.

Change object state when mouse form moves into or out of a

rectangle.

1-15

1.1 AI:::S Introduction to GEM Programming

Table 1-2. Continued

Window Library: Window management

wind_calc

wind_close

wind_create

wind delete

wind_find

wind_get

wind_open

wind set

wind_update

Calculate size of window with or without control areas.

Close window.

Create window and return window handle.

Delete window.

Return handle of window underneath mouse form.

Get window information.

Open window.

Set window characteristics.

Notify AES that a window update is to begin or end or mouse

control by program is to begin or end.

Resource Library: Resource file and object address management

rsrc free

rsrc_gaddr

rsrc load

rsrc obfix

rsrc_sadd~

Release memory allocated to a resource file.

Get address of an object or object tree.

Load a resource file of object trees.

Convert object location and size to pixel coordinates.

Store address of an object or object tree.

Scrap Library: Temporary file management

scrp_clear

scrp_read

scrp_write

Erase all SCRAP files in the current scrap directory.

Get current scrap directory path.

Set scrap directory path.

File Selector Library: Directory display and file selection

fseUnput Process file selection dialog.

1-16

Introduction to GEM Programming 1.2 VOl

Table 1-2. Continued

Shell Library: Shell information retrieval and management

shel_envrn

shel find

shel_rdef

shel_read

shel_wdef

shel_write

Search for an environment parameter string.

Search for a file and return directory path.

Return default application's command and directory path.

Return application's command line (including tail).

Set new default application command and directory path.

Set command to be performed when application terminates.

Extended Graphics Library: Rectangle expand and shrink

xgrf_stepcalc

xg rf_2 box

1.2 VOl

Calculate increments for expanding or contracting rectangle.

Draw series of expanding or contracting rectangles.

The VOl provides device-independent functions for opening and
closing, setting attributes for, drawing on, and getting information from
graphics devices. Input functions are also provided; however, they
should not be used in the same program with the AES event functions.

The VOl functions complement the AES functions--each serving a
different purpose. Use the AES calls to initialize the application,
manage menus and window control areas, and perform object-based
operations within the work area. Use the VOl functions to open and
initialize each graphics device and to output graphics and text.

The VOl functions, like the AES functions, can be grouped according to
use. Space precludes listing all the function definitions here. The
remainder of this section describes the groups.

1-17

1.2 VOl Introduction to GEM Programming

1.2.1 Workstation Control Functions

A workstation is a generic term for any graphics device. Common
graphics devices are a screen, a mouse, and a keyboard, a graphics
printer, and a plotter. Although it is not a graphics device, you treat
metafiles in much the same ways as a graphics device. (Metafiles are.
recorded versions of a n image; see Section 2.6 for the description of
metafiles.)

Each graphics device has two sets of attributes. One set consists of
output attributes, such as color, line style, and text face, that you can
set dynamically during program execution. The other set consists of
device characteristics, such as maximum addressable width and height,
pixel size, minimum line width, and maximum number of colors, that
cannot be changed at runtime.

You use the Open Workstation workstation control function to open
graphics devices and get the device identifier, called the handle. You
use the handle to specify the device in all subsequent access calls.
You use the Open Virtual Workstation function to open the display
screen. This gives the application a virtual screen workstation with a
set of output attributes independent of the physical screen's set.

In the Open Workstation call, you specify the driver to load, set the
coordinate system, and set the default values for the output attributes.
The Open Virtual Workstation call is the same except that you use the
handle to specify the physical device. Both calls return an array with
the device-dependent characteristics and the handle.

The remainder of the workstation control functions are used to load
and unload fonts, clear and update the workstation display surface, and
enable and disable rectangle clipping. (Clipping limits the area in which
graphics output is displayed--see Section 3.4.1 for examples of
rectangle clipping.)

1.2.2 Output Functions

The output functions provide calls for drawing lines between two or
more pOints, a marker at one or more points, text, filled areas, and so
forth. Also provided are a set of generalized drawing primitives for
bars, circles, circular arcs and pie slices, ellipses, elliptical arcs and pie
slices, rounded rectangles (hollow and filled), and justified text. Figure
1-8 illustrates the output functions available.

1-18

Introduction to GEM Programming

Polyline

Polymarker

Graphic text

Bar

Circle

Arc

hello

•
\

Pie slice

Rectangle

Ellipse

Elliptical arc

Elliptical pie slice

Rounded rectangle

Figure 1-8. VOl Output Functions

1.2 VOl

• •
(m}~~~~~~I~@~~jID)

~

Each output function has a set of attributes associated with it. For
example, bars have the fill interior style, fill style index, writing mode,
fill color, and fill perimeter style attributes while lines have a writing
mode, line type, width, color, and end style. You set the attributes
independent of the functions with VOl 'attribute function calls; you do
not set attributes in the output function call. Note, however, that the
Open Workstation allows you to set default values for many attributes.

1.2.3 Attribute Functions

The attribute functions control the writing mode (hOW the item drawn
is imposed over the existing pixel values) and the individual
characteristics for the output functions (line, marker, character, text,
and fill). Once set, an attribute remains set until you change it or the
program terminates.

1-19

1.2 VOl Introduction to GEM Programming

1.2.4 Raster Operation Functions

Raster operations apply to pixels and rectangular blocks of pixels. The
functions copy blocks, set the copy mode (like writing mode, copy
mode determines how the pixel block is imposed over the existing
pixel values), and transform a block between standard and device-·
specific formats.

1.2.5 Input Functions

The input functions return the input from locator (mouse, trackball, or
joystick), valuator (potentiometer), choice (function keys), and string
(keyboard) devices Two access modes are provided for each device:
request and sample. In sample mode, the call returns immediately with
device status and any data available. In request mode, the function
waits until data is available.

Additional functions are provided for the following purposes:

• set the mouse form
• show or hide the mouse form
• exchange timer interrupt, button change, mouse movement, and

mouse form change vectors
• sample the mouse button and keyboard state

1.2.6 Inquiry Functions

The inquiry functions return the current attribute values for the
different output functions, fonts loaded, input mode, and cell size. All
attributes are returned from a single call. For example, the Inquire Fill
Area function returns an array with the values for the fill area interior
style, color index, style index, writing mode, and perimeter style.

1.2.7 Escape Functions

The escape functions access the special capabilities of a graphics
device. The VOl predefines some escape functions, such as those for
controlling the cursor on a screen in alpha mode and managing
metafile output. The driver writer can also define escape functions.

End of Section 1

1-20

SECTION 2

GEM Components and System Interface

This section describes the following:

• Computer system graphics drivers and their characteristics.

• GEM components and their interface to the application, operating
system, and hardware.

• Raster and Normalized Device Coordinates.

• Porting applications to different environments.

• The files used by GEM for initialization, accessory and object
storage, and image recording.

• How to load GEM for different purposes.

2.1 System and Device Characteristics

GEM supports a variety of output devices through a set of device
drivers provided to the user with GEM software. The user selects the

. drivers corresponding to his or her hardware configuration during GEM
installation. The GEM installation software then builds an ASSIGN.SYS
file that correlates each device with a device 10 number and its font
files. The application uses the device 10 from the ASSIGN.SYS file in
its Open Workstation call. See the VOl Reference Guide for the
ASSIGN.SYS description.

The VOl provides a standard interface to all devices. However, device
characteristics such as the display surface size, pixel dimensions,
resolution, and supported functions vary from system to system and
device to device on the same system. For example, the screen
dimensions on one system can be 640 by 400 pixels while on another
it is 320 by 200. Meanwhile, the resolution of a laser printer
compatible with both systems might be 300 pixels by 300 pixels.

2-1

2.2 GEM Components Introduction to GEM Programming

You get the device characteristics from the output array of the Open
Workstation call or, in the case of the screen, the Open Virtual
Workstation call. You find out from these calls, for example, the
device's

• pixel aspect ratio (the ratio of pixel width to height)
• number of character heights, linetypes, linewidths, marker types,

faces, patterns, and colors
• supported Generalized Drawing Primitives
• color, text rotation, area fill, and cell array capability

The VOl Extended Inquire function returns additional device-dependent
information. It is up to you to interpret device data, ensure that the
functions used in your program are supported by the device, and
adjust output data to compensate for the device characteristics.

2.2 GEM Components

When GEM is loaded, it takes over management of the memory
available for transient program execution. The significant system
subdivisions when GEM is loaded are the operating system, AES, VOl,
desk accessories, and application space. Figure 2-1 illustrates how
system memory is allocated to these subdivisions.

2.2.1 AES Components

The AES consists of a kernel, the Screen Manager, the Dispatcher, and
a menu and alert buffer. The kernel provides the AES function support.
All functions except Event Library functions are processed immediately.
The event functions cause a dispatch to let other processes, such as
the Screen Manager or a desk accessory, run.

The Screen Manager is a background process that manages the screen
display and button/keyboard input when the mouse form is in the
following areas:

• menu bar and drop-down menus
• title bar
• information line
• window control areas

2-2

Introduction to GEM Programming 2.2 GEM Components

The Screen Manager reports user input made while the mouse form is
in these areas to an application using predefined messages.

Application
space

AES

VDI consists of
GDOS, drivers, and
fonts.

Drivers and Fonts

Application

Desk Accessories

Menu and Alert Buffer

................ ?~E~~~ .. ~.~~.~.9.~.~

....................... ~~~.P..~~~~.~.~
Kernel

GDOS

Operating System

Figure 2-1. GEM Components in System Memory

The Screen Manager also provides automatic form processing through
Form Library functions. The Screen Manager records user input in the
form's object tree's editable objects and returns to the application
when the user selects an exit button.

The Dispatcher allocates CPU time and maintains process ready and
not-ready lists. Processes sharing CPU time are the application, the
Screen Manager, and other background processes such as a desk
accessory. A dispatch occurs on every tenth call to. the AES or when a
process calls an Event Library function, whichever comes first. You can
force a dispatch with the appl_yield function.

2-3

2.2 GEM Components Introduction to GEM Programming

The Dispatcher allocates time to processes on the ready list on a
round-robin basis. A process remains on the ready list until it calls an
Event library function. The following events are supported:

• a keystroke
• mouse button entry
• mouse movement into or out of a specified rectangle
• an AES or interprocess message
• expiration of a time interval

Note: Applications that do not make many AES calls can dominate
CPU time to the exclusion of other processes, including the Screen
Manager. To avoid this condition, include occasional appl_yield calls in
your code.

The process remains on the not-ready list until the event completes.
At the next dispatch after event completion, the dispatcher adds the
now-ready process to the ready list.

The menu and alert buffer is reserved memory used by the Screen
Manager to hold the area of the screen overwritten by a drop-down
menu or alert box. The size of this buffer is 1/4 the screen size. The
amount of memory allocated to the buffer depends on screen
resolution and the number of color planes. (Color planes are described
in the VOl Reference Guide.)

2.2.2 Desk Accessories

Desk accessories are programs loaded during GEM initialization that
remain in memory as long as GEM is resident. GEM loads up to six
desk accessories from the the first three files with the ACC file
extension in the GEMBOOT directory. Each file can contain more than
one desk accessory. Note that loading stops if the addition of another
desk accessory reduces the amount of memory left for application
space to less than a minimum amount.

The desk accessory names are listed in the rightmost drop-down
menu. The title of this menu is the name of the application running at
the time. Each desk accessory must make a menu register call to
register its name in menu. To remove its name, the-accessory uses
the menu_unregister function.

2-4

Introduction to GEM Programming 2.2 GEM Components

Desk accessories and applications, though similar in many respects,
differ in others. See Section 3.9 for the description of the differences
between desk accessories and applications.

2.2.3 Application Space

The application space is memory reserved by GEM for applications and
the drivers, fonts, and resource files they load. The minimum
application space allowed by GEM 2.x is 192 kilobytes. (The minimum
allowed by GEM 1.x is 12BK.) The 192K minimum, however, is based on
a monochrome screen with a resolution of 640 by 200. On systems
with color screens or higher resolution, the minimum is less to
accommodate the increased needs of the menu and alert buffer.

GEM automatically allocates and deallocates application space memory
to drivers, fonts, and the resource file as the application makes Open
and Close Workstation, Load and Unload Font, and rsrc load (load a
resource file) and rsrc _free (free memory allocated to the resource file)
calls. However, the application must make operating system memory
allocation calls to get temporary memory. If you need contiguous
memory, be sure to make the open, load, and allocate calls before an
Event Library call and within the first ten AES calls.

2.2.4 VOl Components

The VOl has three logical components: the Graphics Device Operating
System (GOOS), graphics device drivers, and fonts. The GOOS controls
VOl function processing and the assignment of device handles. The
graphics device drivers are the interface to the physical devices. Fonts
are character bit images loaded from file. Each type face has an
individual font file.

The screen and mouse drivers are loaded as an integral part of the
GEM system. The screen driver includes a system font. The screen
driver is usually the only device that includes a default font. You can
load additional screen fonts if more are listed in the ASSIGN.SYS file.
The GOOS loads all drivers besides the screen and mouse drivers and
all fonts besides the system font into the application space.

2-5

2.3 Component Relationships Introduction to GEM Programming

2.3 Component Relationships

Figure 2-2 illustrates the functional relationship between the
application, desk accessories, GEM components, and the operating
system. Applications and desk accessories use the functions of all
three services--the AES for its menu, window, and input functions; the'
VOl for its device initialization and output functions; and the operating
system for its file system functions,

Note that the AES goes through the VOl for screen output and user
input. This provides AES function portability from one system to
another.

2-6

Application
or

Desk
Accessory

os

AES

----... ·8

Shaded area indicates
VDI components.

Figure 2-2. GEM Component Relationships

Introduction to GEM Programming Coordinate Systems

2.4 Normalized Device and Raster Coordinate Systems

All computer graphics are displayed using a coordinate system to
reference individual points on the workstation. The VOl supports two
coordinate systems: normalized device coordinates and raster
coordinates. You specify which coordinate system you are going to
use in the Open Workstation and Open Virtual Workstation calls.

Note: The AES requires you to use raster coordinates to reference
points on the display device.

Normalized device coordinates (NOC) provide a standard addressing
scheme independent of the number of actual picture elements (pixels)
supported by the device. The address space defined by NOC is square
with 32,768 units on each axis. A point referenced by NOC
coordinates appears at the same relative location on the surface
regardless of the device.

Raster coordinates (RC) provide an addressing scheme that references
locations according to their pixel coordinates. The number of pixels on
each axis is defined by the device driver. You get the number of pixels
on each axis and the pixel dimensions (pixels are not necessarily
square) from the Open Workstation or Open Virtual Workstation
functions' output arrays.

An important difference between normalized device and raster
coordinates is the origin point (the point where the x and y axes
meet). For normalized device coordinates, the origin point is in the
lower lefthand c.orner. For raster coordinates, the origin point is in the
upper lefthand corner. Figure 2-3 illustrates the differences between
normalized device and raster coordinates.

2-7

Coordinate Systems

n 'l.~7~7 \,I, V'-, VI

0,0 32767,0

Normalized Device
Coordinates .

Introduction to GEM Programming

nn """,

0, y-1

x = Total number of pixels
on x axis

y = Total number of pixels
on y axis

Raster Coordinates

Figure 2-3. Normalized Device Versus Raster Coordinates

The VOl translates normalized device coordinates to raster coordinates
before outputting point references to a device driver. Because the VOl
maps the full NOC range (0 to 32,767) to each axis, the aspect ratio
(the ratio of the horizontal to vertical dimensions) is not 1:1 for
devices with an unequal number of pixels on the axes. Note that the
pixel dimensions also affect the aspect ratio.

Figure 2-4 shows how the aspect ratio distorts a polyline square
drawn in NOC coordinates when printed on a device with an address
space 600 pixels by 400 pixels. The source is 16,383 units square (half
of the total addressable space). In raster coordinates, the square ·is
printed as a rectangle 300 by 200 pixels.

The VOl compensates for the aspect ratio when you use the
generalized drawing primitives to draw circles, circular arcs, and
circular pie slices. (The generalized drawing primitives are described in
the VOl Reference Guide description of the output functions.) For all
other output functions and generalized drawing primitives, you must
compensate for the aspect ratio.

2-8

Introduction to GEM Programming Porting Applications

VDI maintains proportion of line length to axis length
when the lines are transformed from NDC to Re.

1- 16383-1 600 I _ -..... _..................... _._ -.. .

1 6

3

8\3 .. _ _ __ .::::::::::-::::-_:::::::::::::::~~::: ::::::::-:~::I·~i~-·····:·::·········-·I
Normalized Device

Coordinates

Raster Coordinates

Figure 2-4. Aspect Ratio Conversion

2.5 Porting Applications to Different Environments

Programs written to GEM system software are portable to any machine
with the same processor that can run GEM. Because the interface to
the AES and VOl is machine-independent, you can also develop
programs portable to GEM environments with different processor
architectures. Portability considerations arise from three areas:

• memory management
• operating system file system functions
• processor word order

There are two memory management considerations:

• establishing application's runtime memory requirements
• allocating and deallocating temporary memory

To establish the application's runtime memory requirements, link its
object file with one of several routines provided in the GEM Developer
Kit. These routines determine the application's memory requirements
and shrink the memory allocated at runtime to that amount.

2-9

Porting Applications Introduction to GEM Programming

You use the operating system's memory allocating and deallocating
functions to get and release temporary memory. Nete that GEM does
not automatically release memory acquired through operating system
calls.

One way to minimize machine-dependency is to put the environment-·
specific functions in include files. The PORTAB.H and MACHINE.H files
provided in the GEM Developer Kit demonstrate include files you can
develop to minimize program modifications.

2.6 Reserved Files

Table 2-1 lists the files, filenames, and file extensions reserved for
GEM use. The metafile and image files mentioned in the table are
defined as follows:

A metafile is a stored generic form of a picture file. The file is
composed of a header which describes the file characteristics, such as
coordinate system and physical page size, and a metafile item for each
VDI function call made. Each item contains the function operation code
(opcode), the number of input vertices in the function, an integer
parameter count, a sub-opcode (if present), and the vertex and integer
data.

An image file is a stored picture file in raw pixel form. The file
contains a header and a series of scan line items. The header defines
the source device characteristics including the pixel height and width,
scan line width (number of pixels on the x axis), and the number of
color planes. Each scan line item defines the pixel state for one or
more rows of pixels.

See the VDI Reference Guide for the complete description of metafiles
and image files and their use.

2-10

Introduction to GEM Programming Reserved Files

Table 2-1. Reserved GEM Files

Note: "afn" below means "any filename".

File Name

afn.ACC

afn.APP

afn.DFN

afn.FNT

afn.GEM

afn.lMG

afn.OUT

afn.RSC

afn.RSH

afn.SYS

Description

Desk accessory file

GEM application file

Object definition file generated by GEM RCS
(required only for editing RSC files)

Font file

Metafile (see below for description)

Image file (see below for description)

Merged text and graphics file

Object tree resource file generated by GEM RCS

Editable version of an RSC file

Device driver file

ASSIGN.SYS ASCII file used by GEM to get the

SCRAP.*

• device driver filename for a given device ID
• filename for the device's font file

See the VOl Reference Guide for the ASSIGN.SYS
format description.

Temporary files created by the Scrap Library
functions. See the Scrap function descriptions in
the AES Reference Guide for the list of SCRAP
file extensions.

2-11

Enabling Graphics Introduction to GEM Programming

2.7 Enabling Graphics

You must load the GEM software before you can run programs that
make AES and VOl calls. Once GEM is installed, there are three ways
to load GEM and run an application:

• Enable graphics and invoke GEM Desktop. Use the following
command to load GEM and invoke the GEM Desktop as the
operating system shell:

GEM

This command makes GEM Desktop the default application. The
user can invoke any application from the GEM Desktop. When the
application terminates, the user returns to the GEM Desktop. When
the GEM Desktop terminates, the user returns to the operating
system shell .

• Enable graphics and invoke a GEM application. Use the
following. command to load GEM and invoke an application other
than the GEM Desktop:

GEM filename

When the application terminates, the user returns to the operating
system shell.

• Enable graphics and invoke a non-GEM application. Use the
following command to load GEM and a non-GEM application, such
as a debugger or test program, or a graphics program that uses
VOl functions alone:

GEM Ifilename

For options 2 and 3, the file specified must be in the current search
path or be preceded by the path specification.

End of Section 2

2-12

SECTION 3

Application Programming Tasks and Examples

This section describes common programming tasks performed in GEM
applications and demonstrates the use of AES and VOl functions. The
examples are in C and taken from the DEMO.C program provided in the
GEM Developer Kit. Before proceeding with the examples, run the
executable version of this program, DEMO.APP, to see how it works. A
summary of DEMO operation is provided below.

Note: DEMO is updated from time to time to incorporate new
functions and correct bugs. Consequently, the version you receive
might not be identical to the one used below.

The following tasks are described in this section:

• Program initialization
• Event management
• Menu processing
• Form processing
• Work area maintenance
• Program termination

A description of the differences between applications and accessories
follows the program termination examples.

Note: In the descriptions and examples that follow, functions and
variables are printed in lowercase letters and constants are printed in
uppercase letters.

3.1 Application Planning

Before you begin coding, make the application's object tree resource
file or files. This helps in planning and can save hours in development
time through the use of the include files provided by GEM RCS.

To make a resource file, create a story board of the program's drop
down menus, pane.ls, dialog boxes, alert boxes, and so forth. Next, use
GEM RCS to construct each tree. You should endeavor to have all of

3-1

3.2 DEMO Overview Introduction to GEM Programming

the program's object trees in a single resource file. As you create the
trees, give a name to all objects you wiii reference in the appiication.

GEM RCS creates a number of files. It records the object trees in a file
with the RSC extension. This is the file you load during program
initialization. In addition, GEM RCS creates an include file for C, Pascal,
BASIC, and/or FORTRAN-77 compilers with the index of each object
you named. Finally, GEM RCS creates an object definition file with the
extension DFN. You need this file only for editing the RSC file; you do
not need it when you load the RSC file in the program.

3.2 DEMO Overview

The DEMO application is a program that draws or erases according to
the mouse location and button state. It has four object trees:

• the menu bar with File, Options, and DEMO drop-down menus
• the Pen/Eraser Selection dialog box
• the DEMO information display
• the dialog box for the 'ISave as .. .'1 File menu item

The names used in DEMO.C to reference the trees and individual
objects are taken from the DEMO.H file provided in the GEM Developer
Kit.

The File menu options are as follows:

• load a previously recorded file
• save the current screen in the open file
• save the current screen under a different filename
• abandon the changes made since last save
• quit DEMO

The Options menu provides items that select the Pen/Eraser Selection
dialog and clear the screen

DEMO displays a cross-hair mouse form that echos mouse input.
When the user holds down the leftmost mouse button, either a line is
drawn or a square block is erased. The user selects the pen size and
color or the eraser block size from the dialog box displayed when he
or she clicks on the Pen/Eraser Selection item in the Options menu.

3-2

Introduction to GEM Programming 3.3 Program Initialization

3.3 Program Initialization

The initialization tasks for a GEM application are as follows. The
functions used to perform them are shown in parentheSis.

• Establish internal data structures in the AES (appl_init).

• Load the program's resource file (rsrc _load).

• Open screen virtual workstation to get handle and display device
characteristics (v _ opnvwk and vq_ extend).

• Open output devices (v _ opnwk) and load fonts (vst_load _fonts).

• Allocate temporary memory and declare the message buffer array.

• Initialize Memory Form Definition Blocks (MFDBs) and rectangle
structures.

• Transform icons and bit image objects from the standard format
to the device-specific format (vr _ trnfm).

• Create and open the application's window (wind create and
Wind_open). -

• Display the menu bar (menu bar), display title bar (wind set), and
sliders (Wind_set). - -

During initialization, take control of the screen from the AES with the
wind_update function and change the mouse form to an hourglass
with graf_mouse. Generally, take control of the screen any time you
update it to prevent the AES from updating it simultaneously. When
initialization is complete, release control of the screen with another
wind update call and set the mouse form to the application's form
with another graf_mouse call.

Listing 3-1 contains the DEMO.C code used to initialize the program
and open the screen virtual workstation. The BEG UPDATE argument in
the wind update call takes screen control from the AES and the
HOUR GLASS argument sets the mouse form to the hourglass form.
The wind update and graf mouse calls that release control of the
screen an-d change the mouse form to the program form are not
shown in this listin·g.

3-3

3.3 Program Initialization Introduction to GEM Programming

Listing 3-1. Opening Virtual Workstation

WORD
demo_init()

WORD work_in[ll];
WORD i;

gl_apid = appl_init(); 1* initialize libraries *1
if (gl_apid == -1)

return(4);
wind_update(BEG_UPDATE);
graf_mouse(HOUR_GlASS, OxOl);
if (1rsrc_load(ADDR("DEMO.RSC") » 1* DEMO.RSC must be in path *1

(

graf_mouse(ARROW, OxOl);
form_alert(1,
ADDR("[3][Fatal Error !IDEMO.RSCIFile Not Found][Abort]"»;
return(l);

1* open virtual workstation *1
for (;=0; i<10; i++)
(

work_in[i]=l ;

work_in[10]=2;

gem_handle = graf_handle(&gl_wchar,&gl_hchar,&gl_wbox,&gl_hbox);
vdi_handle = gem_handle;
v_opnvwk(work_in,&vdi_handle,work_out);

if (vdi_handle == 0)
return(1);

In the above listing, the graf handle call provides the screen's handle
required for the v opnvwk can. When v opnvwk returns, the vdi handle
value is redefined:- The remainder of DEMO uses the new value- for all
VOl calls. The graf handle call also returns the screen device's
character cell and bo-x dimensions. The box is a square large enough
to hold the default system font character.

The v opnvwk input arguments in the sample listing select the
following:

3-4

Introduction to GEM Programming 3.3 Program Initialization

• a virtual screen
• solid line
• dot polymarker
• system type face
• solid interior style
• black as the line, polymarker, text, and interior style color
• raster coordinates

DEMO opens no graphics devices other than the display device. If you
need to load other device drivers and fonts, the time to do it is within
the first ten AES calls and before an Event Library call. This
guarantees that the memory allocated to the drivers and fonts is
contiguous with the program memory. Similarly, make your operat.ing
system calls to get temporary memory before the tenth AES call or an
event call to guarantee contiguous memory locations.

The v opnvwk call returns the dimensions of the desktop window work
area [scrn width and scrn height) in the work out array. DEMO uses
these values to initialize Memory Form Definition Blocks (MFDBs) for
the world coordinate space (undo mfdb) and the screen area
(scrn mfdb). The MFDB structure includes a pointer to the memory
block:' the form's x and y axis lengths, and the number of planes.
(Planes are memory blocks the same size as the block defined in the
MFDB. Multiple planes are necessary only for color screens.) The
memory block pointer is always zero for the screen area. See the VDI
Reference Guide for the description of MFDBs.

In DEMO, the world coordinate space and screen area are the same
size, however, the view area is slightly smaller because of the
application window's control areas and title bar.

Before you can display icons and bit image objects, you must
transform them from standard form to the device-specific form.
Listings 3-2 and 3-3 show the DEMO routines used for this purpose.
There are six program-defined objects in DEMO: the three pen and
three eraser sizes in the Pen/Eraser Selection dialog box.

Listing 3-2 shows getting the address of the object trees in which the
pen and eraser sizes are a part (DEMOINFD and DEMOPEND,
respectively). The R TREE value used in the rscr gaddr calls is defined
in· GEMBIND.H as O':--the object type value for a-tree. The first call to
trans_gimage transforms the logo in the "About GEM Demo ... " dialog

3-5

3.3 Program Initialization Introduction to GEM Programming

box. In the loop that follows, trans _gimage transforms the three pen
and three eraser images.

Listing 3-2. Transforming Objects and Initializing APPLBLK
Structures

VOID
pict_init()
(

LONG tree;
WORD tr_obj, nobj;

rsrc_gaddr(R_TREE, DEMOINFD, &tree);
trans_gimage(tree, DEMOIMG); '* Xform logo in DEMO Info *'
rsrc_gaddr(R_TREE, DEMOPEND, &tree);
for (tr_obj = DEMOPFIN; tr_obj <= DEMOEBRD; tr_obj++)

trans_gimage(tree, tr_obj);
LWSET(OB_TYPE(tr_obj), G_USERDEF);
nobj = tr_obj - DEMOPFIN;
brushub[nobj].ub_code = drawaddr;
brushub[nobj].ub_parm = LLGET(OB_SPEC(tr_obj));
LLSET(OB_SPEC(tr_obj), ADDR(&brushub[nobj]));

The trans _gimage function gets an icon's mask and data image
addresses, height, and width from a data structure called a ICONBLK.
Alternatively, it gets a bit image's image address, height, and width
from a BITBLK data structure. (See the AES Reference Guide for the
ICONBLK and BITBLK descriptions.) Listing 3-3 shows the
transformation of the pen and eraser bit images.

3-6

Introduction to GEM Programming 3.3 Program Initialization

Listing 3-3. Object Transformation

VOID
vdi_fix(pfd. theaddr, wb, h) /* set up MFDB for xform */

MFDB *pfd;
LONG theaddr;
WORD wb, h;

pfd->fww wb » , . , /* # of bytes to words */
pfd->fwp wb « 3; /* # of bytes to to pixels */
pfd->fh h· , /* height in scan 1 i nes */
pfd->np ,. , /* number of planes */
pfd->mp = theaddr; /* memory pointer */

}

WORD
vdi_trans(saddr, swb, daddr, dwb, h) /* 'on the fly' transform

LONG saddr;
WORD swb;
LONG daddr;
WORD dwb;
WORD h' ,

(

MFDB src, dst; /* local MFDB */

vdi_fix(&src, saddr, swb, h);
src.ff = TRUE; /* standard format */

vdi_fix(&dst, daddr, dwb. h);
dst.ff = FALSE; /* transform to device */
/**/ /* specific format */
vr_trnfm(vdi_handle. &src, &dst);

VOID
trans_gimage(tree, obj)

LONG tree;
WORD obj;

LONG
WORD

taddr, obspec;
wb. hl, type;

/* xform bit images,icons

obspec = LLGET(OB_SPEC(obj»;
type = LWGET(OB_TVPE(obj»;

*/

*/

3-7

3.3 Program Initialization Introduction to GEM Programming

Listing 3-3 (continued)

if (type == G_ICON)

}

taddr = LLGET(IB_PMASK(obspec»; 1* pointer to icon mask*1
wb = LWGET(IB_WB(obspec»;
wb = wb » 3; 1* pixels to bytes *1
hl = LWGET(IB_HL(obspec»; 1* height in scan lines *1
vdi_trans(taddr, wb, taddr, wb, hl); 1* transform mask *1

taddr = LLGET(IB_POATA(obspec»; 1* pointer to icon data*1

else
(

taddr = LLGET(BI_POATA(obspec»; 1* pointer to image *1
wb = LWGET(BI_WB(obspec»; 1* width in bytes *1
hl = LWGET(BI_HL(obspec»; 1* height in scan lines*1

}

vdi_trans(taddr, wb, taddr, wb, hl);I* transform image or *1
1**1 1* icon data *1

The next excerpt gets the address of the event message buffer,
displays the application's menu bar, and creates the window. Window
Library functions are used as follows to create the window:

• wind _get--Returns the location and size of the desktop window
work area.

• wind _ create--Creates a window to fill the desktop window work
area and selects the title bar and all control areas (the information
line is omitted).

• wind_set--Sets the title bar text string.

3-8

Introduction to GEM Programming 3.4 Event Management

Listing 3-4. Set-up Message Buffer and Screen

ad_rmsg = ADDR«BVTE *) &gl_rmsg[O]); '* Get address of msg buf *'

rsrc_gaddr(R_TREE, DEMOMENU, &gl_menu); '* get menu address */
menu_bar(gl_menu, TRUE); '* show menu *'
demo_whndl = wind_create(OxOfef, gl_xfull - 1, gl_yfull,

gl_wfull, gl_hfull);
if (demo_whndl == -1)

form_alert(l, string_addr(DEMONWDW»;
return(3);

3.4 Event Management

After program initialization, use the Event Library calls to read user
input and direct program execution. The event options are as follows:

• The user presses a key (evnt_keybd).

• The user presses one or more mouse buttons in a specific
combination (evnt_ button).

• The user moves the mouse into or out of a defined area
(evnt_ mouse).

• A message is waiting in the message buffer. The AES uses
messages to indicate the following events:

a window control area was clicked on or dragged
a drop-down menu item was clicked on
a partial or complete screen redraw is necessary
a new window has been selected for display

• A specified number of ticks expires on the system clock
(evnt_ timer).

3-9

".4 t:vent Management Introduction to GEM Programming

You specify a single event with the calls shown in parenthesis above.
Use the evnt multi function when you want to wait for one of several
events to complete. You select the events and pass the related
arguments in a single evnt_ multi call.

The evnt multi call returns when at least one of the events completes.
The return code designates which events completed. To optomize
message use, the AES merges events. Consequently, you can get a
return code with more than one event flag set. Be sure to check for
the completion of all events in your event servicing routine.

Listing 3-5 contains the DEMO's main event loop. DEMO has another
event loop in the button handling routine; however, this is the primary
loop for evaluating user input and determining how to proceed. The
evnt_ multi call in this listing specifies the following events:

MU BUTTON One to two clicks are made on the leftmost mouse
button. A click is recorded when the button goes into
the down state.

MU MESAG A message is received from the AES.

MU M 1 The mouse either enters or leaves, depending on the
value of m _out, the application window work area.

MU KEYBD A key is pressed.

No timer event is specified in this call.

The evnt multi call returns with an event type number indicating which
event(s) occurred and the following information about the event:

• the mouse form's x and y coordinates (mousex and mousey)
• the state of the mouse buttons specified (bstate)
• the state of the keyboard's right and left shift, control, and, if

present, AL T keys.

The proper event handler is selected by ANDing the evnt multi return
code with the event type values. -

The evnt multi call runs until one of the hndl routines returns true.
(FOREVER- is defined in PORTAB.H as "for (;;)".) For example, this occurs
when the close box (see DEMO's hndl msg routine) or the Quit item is
selected in the File menu (see DEMO's-hndl_ menu routine).

3-10

Introduction to GEM Programming 3.4 Event Management

demo ()
(

}

Listing 3-5. Main Event Loop

BOOLEAN done;

key_input = FALSE;
done = FALSE;
FOREVER /* Infinite loop, defined as fore;;) */
(

ev_which = evnt multi(
MU_BUTTON I MU_MESAG I MU_Ml I MU_KEYBD,
Ox02, OxOl, OxOl, m_out,
(UWORD) work_area.9_x, (UWORD) work_area. 9_y ,
(UWORD) work_area.9_w, (UWORD) work_area.9_h,
0, 0, 0, 0, 0, ad_rms9, 0, O.
&mousex, &mousey, &bstate, &kstate,
&kreturn, &bclicks);

curs_off();
key_input = FALSE;
save_work();

if (ev_which & MU_MESAG)
if (hndl_ms9(»

break;
if (ev_which & MU_BUTTON)
if (hndl_button(»

break;
if (ev_which & MU_Ml)
if (hndl_mouse(»

break;
if (ev_which & MU_KEYBD)
if (hndl_keyboard(»

break;

3-11

3.4 Event Management Introduction to GEM Programming

3.4.1 Button Handling

The evnt_ multi call returns information in its output array that tells you
which button or buttons were pressed and what their state was at the
time. For all button events, the number of clicks is always at least one
and never more than the number specified in the input array.

In DEMO's event loop, the button event specified is 1 or 2 clicks of the
leftmost button. A click is defined as the transition of the button from
up to down.

Listing 3-6 shows the button handling routine that draws lines or
erases until the button is released. (In DEMO, erasing is actually
outputting a rectangle in the background color.) The x and y
arguments passed in draw_pencil are the mouse form's x and y
coordinates when the button was pressed.

Another evnt multi call is made within the button handler. The events
stipulated and the program responses are as follows:

• Button is raised--stop drawing and return to the event loop.

• Timer expires--show mouse form and repeat this evnt_ multi call.

• Mouse moves--draw line/eraser, update x,y array, and repeat
evnt multi call.

This listing also demonstrates use of the VOl attribute functions that
define the writing mode; line width, end style, color, and type; and
polygon (for the eraser) color and interior fill-style. The writing mode
determines how the output affects the current display data. The
options are replace, transparent, XOR, and reverse transparent. See the
"Attribute Functions" description in the VOl Reference Guide for the
explanation of the writing modes and the other attributes.

This listing also shows these other functions:

• set_clip: A local function that calls the vs_clip function to set and
release the clipping rectangle.

• save_work: A local function that copies the current work area
from the screen memory block to the undo _ mfdb memory block.

• eraser: A routine that draws a rectangle at the current mouse
form location.

3-12

Introduction to GEM Programming 3.4 Event Management

Listing 3-6. Button Handling

WORD
draw_pencil(x, y)
UWORD x, y;
(

UWORD
WORD
UWORD
UWORD
UWORD

pxy [4] ;
done;
mflags;
locount, hicount;
ev_which, bbutton. kstate, kreturn. breturn;

set_clip(TRUE, &work_area);
pxy[O] x;
pxy[l] = y;

vsl_color(vdi handle,demo_shade);
vswr_mode(vdi_handle,MD_REPLACE);
vsl_type (vdi_handle,FIS_SOLID);

if (demo_shade != PEN~ERASER)

)

else
(

)

vsl width (vd; handle,demo_pen);
vsl_ends(vdi_handle, 2, 2);
hicount = 0;
locount = 125;
mflags = MU_BUTTON I MU_M1
graf_mouse(M_OFF, OxOL);

vsf_interior(vdi_handle, 1);
vsf color(vdi handle, WHITE);
mfl;gs = MU_BUTTON I MU_Ml;

3-13

3.4 Event Management Introduction to GEM Programming

}

3-14

done = FALSE;
while (!done)

Listing 3-6 (continued)

ev_which = evnt_multi(mflags, OxOl, OxOl, OxOO, 1,
pxy[O]' pxy[l], 1, 1,0,0,0,0,0
ad_rmsg, lacount, hicount, &pxy[2], &pxy[3],
&bbutton, &kstate, &kreturn, &breturn);

if (ev_which & MU_BUTTON)

else

if (! (mflags & MU_TIMER»
graf_mouse(M_OFF, OxOl);

if (demo_shade != PEN_ERASER)
v_pline(vdi_handle, 2, (WORD *) pxy);

else
eraser«WORD) pxy[2]. (WORD) pxy[3]);

graf_mouse(M_ON, OxOl);
done = TRUE;

else

graf mouse(M ON, OxOl);
mflags = MU_BUTTON I MU_Ml;

if (!(mflags & MU_TIMER»
graf_mouse(M_OFF, OxOl);

if (demo_shade != PEN_ERASER)

v pline(vdi handle, 2, (WORD *) pxy);
mflags MU=BUTTON I MU_Ml I MU_TIMER;

else

eraser«WORD) pxy[2], (WORD) pxy[3]);
graf_mouse(M_ON,OxOL);

pxy[O]
pxy[l]

pxy[2];
pxy[3];

} /* while */
set_clip(FAlSE, &work_area);

. save_work () ; / * copy work area to undo * /

Introduction to GEM Programming 3.4 Event Management

3.4.2 Mouse Handling

A mouse event occurs when the mouse form enters or leaves a
defined region. You can specify one region in the evnt mouse call or
two regions in the evnt multi call. Both calls return the mouse form's x
and y coordinates when-the event completed.

One use of the mouse event is to change the mouse form as it enters
and leaves the application window work area. The AES automatically
converts the mouse form to an oblique arrow when the mouse leaves
the application window. The application is responsible for all changes
within the application window.

Note: When the user moves the mouse form into the menu bar and
back onto the work area without touching a menu title, the AES treats
the action as a mouse event. When a title is touched, however, the
event is not complete until the user clicks the button. If the user clicks
on a menu item, the AES returns a message event. If the user clicks
on the application window work area, the AES returns a mouse event.

The evnt_multi call in Listing 3-5 specifies one region: the application
window work area. Listing 3-7 shows the routine that switches the
mouse form back and forth between the application form and the
oblique arrow as the mouse form goes between work area and
window control areas.

Listing 3-7. Mouse Handling

WORD
hnd l_mouse ()
(

}

BOOLEAN done;

graf_mouse(ARROW. OxOL);
else

graf_mouse(monumber. mofaddr);

m_out = !m_out;
done = FALSE;
return(done);

3-15

3.4 Event Management Introduction to GEM Programming

3.4.3 Message Handling

The AES sends a message for the following events:

• a window control area was clicked on
• a menu item was clicked on
• a portion of the screen needs to be redrawn
• the user selected a new top window

A message is a 16-word array in which word(O) contains a number
indicating message type, word(l) contains the application identifier (the
appl init return code) of the application that sent the message and
word(2) indicates the length of the message. The ap _id of the AES is
zero.

Note: The word(2) value is zero for the standard length, l6-word
message. All messages from the AES are 16-words. Longer messages
can be used for interapplication communication. See the Application
library description in the AES Reference Guide for the explanation of
interapplication messages.

The remainder of the message array is message-type dependent. For
example, the message indicating the selection of a menu item contains
the object index of the menu title and the item selected. The redraw
message, on the other hand, defines the area to redraw.

listing 3-8 shows the portion of the DEMO message handler that
interprets the following messages:

• MN SELECTED: A menu item has been selected.
• WM REDRAW: A portion of the screen needs to be redrawn.
• WM-TOPPED: A new window has been moved to the top.
• WM -CLOSED: The close box was clicked on.
• WM FULLED: The full box was clicked on.

The portion of the listing that shows arrow box, slide bar, size box,
and move message handling is described in Section 3.7 below.

The message array in hndl msg, gl rmsg[8], is declared in DEMO's
Local Data Structures. The pointer to it is defined in demo init (see
listing 3-4) and passed to the AES in the evnt_ multi call. -

The do redraw and do full functions are DEMO routines that redraw
the screen and toggle between full and partial screen views. The area

3-16

Introduction to GEM Programming 3.4 Event Management

to be redrawn is taken from the message and passed to do_redraw in
the input arguments. The do full routine, on the other hand, must
determine whether to display the full or partial view area. The
do_redraw routine is shown in Listing 3-16 on page 3-34 and do_full
appears in Listing 3-18 on page 3-37.

The wind set function called in response to the WM TOPPED message
is an AES function that displays and makes active the window
specified by the handle in word three of the message array.

Listing 3-8. Message Handling

BOOLEAN hndl_msg()
(

BOOLEAN done;
WORD wdw_hndl;
GRECT work;

done = FALSE;
wdw_hndl = gl_rmsg[3];
switch(gl_rmsg[O]
(

case MN_SELECTED:

break;
case WM_REDRAW:

do_redraw(wdw_hndl, (GRECT *) &gl_rmsg[4]);
break;

case WM_TOPPED:

break;
case WM_CLOSED:

done = TRUE;
break;

case WM_FULLED:

break;

return(done)

3-17

3.4 Event Management Introduction to GEM Programming

Note that the response to WM CLOSED is to set the done value to
TRUE. This causes a break in the event handler that results in the
processing of DEMO'S termination routine. Also note that the use of
the variable name wdw hndl in the MN SELECTED response is a
misnomer in this context gl rmsg[3] in a -MN SELECTED message is
the object index of the menu title selected.

3.4.4 Keyboard Handling and Text Output

The keyboard handling routine gets the character input from word(5) of
evnt mUlti's output array. Unless you intend otherwise, the keyboard
handling routine should trap the system's program termination key and
any other special or reserved keys; neither the AES nor VOl filter input
for special characters.

Listing 3-9 illustrates how DEMO filters for CTRL -C (03H) and sets text
attributes and output location. If the character is a CTRL -C, the routine
returns TRUE. Like the WM TOPPED case, this causes a break in the
event handler and results in-DEMO termination routine processing.

The text output attributes set in this routine are as follows:

• vswr _mode: replace writing mode
• vst color: text color
• vst_ height: character height
• vst_alignment: left justified along the bottom of the character cell

The vst color and vst height are selected by the user in the
Pen/Eraser Selection dialog. The color argument is by color index. The
character height argument is. by raster units. In this case, the height
value is dependent on the size of the pen or eraser selected.

The vst height function returns the character and character cell
dimensions supported by the device that are closest to the character
height requested. Similarly, the vst_alignment function returns the
alignment supported. The character and cell dimensions are used to
increment the character and line spacing as each character and row is
output. The data returned from vst_alignment is ignored in DEMO.

The graf mkstate call returns the current mouse form location and the
button and keyboard status information. Only the mouse form x,y data
is used in DEMO.

3-18

Introduction to GEM Programming 3.4 Event Management

Listing 3-9. Checking for CTRL-C and Setting Text Attributes

WORD
hndl_keyboard()
{

WORD
BYTE
GRECT

i . ,
str[2];
lttr. test;

if «str[O] = kreturn) Ox03)
return(TRUE);

graf_mouse(M_OFF, OxOL);
if (!key_input) /* Set FALSE in demo() */
(

else

vswr_mode(vdi_handle, MD_REPLACE);
vst_color(vdi_handle, pen_shade);
vst_height(vdi_handle, demo_height,

&gl_wchar,&gl_hchar,&gl_wbox,&gl_hbox);
gl_hspace = gl_hbox - gl_hchar;
vst_alignment(vdi_handle, 0, 3, &i, &i);
graf_mkstate(&key_xbeg, &key_ybeg, &i, &i);
key_xcurr ++key_xbeg;
key_ycurr = --key_ybeg;

curs_off();
str[l] = '\0';

DEMO uses the vst height function to set the character height. Use
this function to specify the character height in NDC or RC units.
Alternatively, you can use the vst point function to set the ·character
height using points. (There are 72-points in an inch.) Both functions
return the closest cell and character heights, in NDC or RC units,
supported by the driver; vst height also returns the cell height
selected in points. The intout(5} value in the v opnwl< and v opnvwk
output array indicates how many character - heights the - device
supports.

The last statement above sets the last character in the output string to
NUL to satisfy the v gtext function's character output requirements.
listing 3-10 shows the character output call sequence.

3-19

3.5 Menu Processing Introduction to GEM Programming

Listing 3-10. Character Output

set_clip(TRUE, &work_area);
v_gtext(vdi_handle, key_xcurr,

key_ycurr, str);
set_clip(FALSE, &work_area);
key_xcurr += gl_wbox;

The last statement above increments the character cursor (called the
"soft cursor" in DEMO) location by one character cell so that the next
character received is output to the proper location.

3.5 Menu Processing

The evnt_ multi call returns the menu title's and item's object index in a
message when the user selects an item. These values indicate the
offsets within the menu object tree of the title's and the item's
OBJECT structure. (Section 3.6 below describes the OBJECT structure.)

Listing 3-11 shows the DEMO menu handling routine. In this excerpt,
the names used in the case functions are the title and item names
defined in DEMO.H; the DEMO include file generated by GEM RCS when
the object trees were constructed. The hndl_ menu title and item
arguments are the corresponding index values passed in from the
message handler (see Listing 3-8).

The menu tnormal call is made here to reset the menu title to normal
video. Although the AES redraws the screen where the drop-down
menu was displayed, it does not reset the menu title.

3-20

Introduction to GEM Programming .3.5 Menu Processing

Listing 3-11. Menu Handling

WORD
hndl_menu(title, item)
WORD tit 1 e , item;
{

WORD done;

graf_mouse(ARROW, OxOl);
done = FALSE;
switch (title) {
case DEMODESK:

if (item == DEMOINFO)
do_ab'out () ;

break;

case DEMOFIlE:
sw it ch (i tem)
(

case DEMOLOAD:
do_load(TRUE);
break;

case DEMOSAVE:
do_save();
break;

case DEMOSVAS:
do_svas();
break;

case DEMOABAN:
file_handle = dos_open(ADDR(file_name),2);
do_load(FALSE);
break;

case DEMOQUIT:

}

done = TRUE;
break;

3-21

3.6 Form Processing Introduction to GEM Programming

Listing 3-11 (continued)

case DEMOOPTS:
switch (item)
(

case DEMOPENS:
do_penselect();
break;

case DEMOERAP:

break;

}

menu_tnormal(gl_menu,title,TRUE);
graf_mouse(monumber, mofaddr);
return (done);

3.6 Form Processing

There are three phases to form processing:

1. the display and removal of the form's dialog box or panel
2. the processing of user interaction with the form
3. the retrieval of the data from the object structures

Display and Removal: You display the form with a sequence of
form dial and objc draw calls. You call form dial to tell the AES where
the dialog box or -panel will be displayed and objc draw to draw the
object tree. Optionally, you can make a form_center call before the
form_dial call to get the x and y coordinates that will center the object
tree on-screen.

The form dial, form center, and objc' draw calls require you to specify
the location of the- upper lefthand corner, height, and width of the
form's root box. This information is available from the root object's
OBJECT structure. You get the address of this structure with the
rsrc _gaddr function.

Figure 3-1 illustrates the OBJECT structure. The fields are defined as
follows. In all cases, nil is defined as -1.

3-22

Introduction to GEM Programming 3.6 Form Processing

• ob next--Index of object's next sibling or, if no sibling, the parent.
The root object has nil in this field.

• ob head--Index of object's first child. Field is nil for objects with
no -children.

• ob tail--Index of object's last child. Field is nil for objects with no
children.

• ob type--type of object
• ob -flags--bit map of object flags
• ob=state--bit map of object states
• ob spec--object dependent information
• ob -x--x coordinate of object relative to parent·
• ob - y--y coordinate of object relative to parent·
• ob - width--width, in pixels, of the object
• ob=height--height, in pixels, of the object

* Location of object's upper lefthand corner

Offset o 2 3
I

o
,

I
,

ob next ob head
-I -I

1

I
,

ob tail ob_type
"I ~

4
,

I
I

ob_flags ob state
I -~

8
1 I

12 ob_spec
I ~
1

I
I

ob x ob-y
L

16
I

I
I

ob_width ob_height 20

Figure 3-1. OBJECT Structure

You also use the form dial function to end the display of the form. As
in the other Form Library calls, you provide the coordinates and
dimensions of the area to be released. The AES uses this information
in the WM _REDRAW message it sends back to the application with the
next evnt_ mesag or evnt_multi.

3.6 Form Processing Introduction to GEM Programming

Input Processing: You have two input processing options:
.

• You can use the form do function to have the AES monitor user
interaction and return when the user selects an exit object. This
function does not allow you to interpret input data as it is input
nor modify the object state while the form is processed .

• You can use the form keybd and form button functions to monitor
user interaction as he- or she moves from object to object in the
object tree. These functions allow you to interpret data as it is
input and modify the object state during form processing.

The form do function takes the tree address and a starting object
index and- returns the index of the exit object selected. The AES
registers user input in the OBJECT structure of the objects affected.

The form keybd function takes the tree address, a character, and a
starting object index. It returns zero if the character was a RETURN
(ODH) or one if the character was anything but a RETURN. The
form _ keybd output array contains the next object selected and, if the
input character was not a TAB, BACKTAB, UP, DOWN, or RETURN, the
character input. (The significance of these characters is described in
the Form library section of the AES Reference Guide.)

The form button function takes the tree address, a starting object's
index, and- a number of clicks as input and returns when the number of
clicks specified is entered. The output array contains a code and the
index of the object selected. The code is one if the object selected is
not an exit button or zero if the object is an exit button.

Retrieving Data: Retrieving the data after a form do is a matter of
comparing the original OBJECT structure contents with the new
contents. For form keybd and form button, data retrieval is immediate
rather than after the whole form is processed.

After getting the data, be sure to reset any fields that must be reset.
For example, you must reset the SELECTED state flag on the exit
button selected so that the next time the form is displayed the button
is appears in normal rather than reverse video.

The following examples illustrate displaying, processing, and retrieving
the data from DEMO's Pen/Eraser Selection dialog box. Figure 3-2
illustrates the dialog box with the medium pen size selected.

3-24

Introduction to GEM Programming 3.6 Form Processing

GEM Deno Pen/Eraser Selection

Pens: ~ • 8~ I
Erasers: CI [J 0 I Cancel!

Pen Colors: liill.lliil
Selected: D

Figure 3-2. DEMO Pen/Eraser Selection Dialog Box

Listing 3-12 shows how to get an object tree's address and set the
current selections. DEMOPEND is the index for this object tree's root
object as defined in DEMO.H. The PEN FINE, PEN MEDIUM, and
PEN_BROAD represent the three size options.- -

The rsrc gaddr function returns the address of the root object in the
&tree argument. The switch function and sel obj routine determine
which pen or eraser size is currently defined by-demo pen and set the
SELECTED state flag in the corresponding OBJECT -structure. The
set color call sets the current color selected.

3-25

3.6 Form Processing Introduction to GEM Programming

Listing 3-12. Setting the Dialog Box's Current Selections

VOID
do_obj(tree. which. bit) 1* set specified bit in object state *1
LONG tree;
WORD which. bit;
(

VOID

WORD state;

state = LWGET(OB STATE(which»;
LWSET(OB_STATE(which). state I bit);

sel_obj(tree. which) 1* turn on selected bit of spcfd object *1
LONG tree;
WORD which;
(

do_obj(tree. which, SELECTED);

rsrc_gaddr(R_TREE. DEMOPEND, &tree);
1**1 1* first setup current selection state *1
switch (demo_pen) {

case PEN_FINE:
sel_obj(tree. (demo shade != PEN_ERASER)?

DEMOPFIN: DEMOEFIN);
break;

case PEN_MEDIUM:
sel_obj(tree. (demo shade != PEN_ERASER)?

break;
case PEN_BROAD:

DEMOPMED: DEMOEMED);

sel_obj(tree. (demo_shade != PEN_ERASER)?
DEMOPBRD: DEMOEBRD);

break;

set_color(tree, DEMOPCLR, pen_shade, bind);

Usting 3-13 demonstrates the display of a dialog box. The form center
command takes the root object's address and returns the x -and y
coordinates of its upper lefthand corner a'.ld the box's width and
height. Use the tree's corner coordinates and dimension values to
reserve the space in the first form_dial call, to set the clip rectangle in

3-26

Introduction to GEM Programming 3.6 Form Processing

objc draw, and finally to release the space in the last form dial call.
The -exitobj value returned by form do is the object index of the exit
button selected. -

Note: The form dial function takes two sets of rectangle coordinates
and dimensions:- Put the arguments for the rectangle to be reserved
and released in the second set.

The AES takes the coordinates and dimensions passed in the last
form_dial call shown in Listing 3-13 and issues a WM _REDRAW
message based on these values. You use this information to replace
the dialog box with the former screen contents.

Listing 3-13. Display and Processing of a Dialog Box

WORD
hndl_dial(tree, def, x, y, w, h)
LONG tree;
WORD x, y, w, h, def;

def = 0;

WORD xdial. ydial, wdial, hdial, exitobj;
WORD xtype;

form_center(tree, &xdial, &ydial, &wdial, &hdial);
form_dial (0, 0, 0, 0, 0, xdial, ydial, wdial, hdial);
objc_draw(tree, ROOT, MAX_DEPTH, xdial, ydial, wdial, hdial);

FOREVER
(

exitobj = form_do(tree, def) & Ox7FFF;
xtype = LWGET(OB_TYPE(exitobj» & OxFFOO;
if (!xtype)

break;
if (xtend_do(tree, exitobj, xtype»

break;

form_dial (3, 0, 0, 0, 0, xdial, ydial, wdial, hdial);
return (exitobj);

3-27

3.6 Form Processing Introduction to GEM Programming

The routine in the FOREVER loop is an advanced bit of form processing
using the high order byte of the object's ob type value. The AES
ignores this byte, however, you can use it. For example, here it is used
to designate the pen color objects as a special type of exit button.

Listing 3-14 shows how DEMO determines whether the OK or Cancel
exit button was selected and, if the former, gets the color and pen or
eraser size selected. The DEMOPFIN and DEMOEBRD are the beginning
and ending indexes for the pen and eraser objects in the tree. The
LWGET function returns the word stored in the designated OBJECT
structure field (in this case, the object state).

Listing 3-14. Getting Data and Resetting SELECTED Flag

VOID
undo_obj(tree, which, bit) 1* clear specified bit in object state */
LONG tree;
WORD which, bit;
(

)

VOID

WORD state;

state LWGET(OB_STATE(which»;
LWSET(OB_STATE(which), state & -bit);

desel_obj(tree, which) 1* turn off selected bit of spcfd object *1
LONG tree;
WORD which;
(

undo_obj(tree, which, SELECTED);
)

for (psel_obj = DEMOPFIN; psel_obj <= DEMOEBRD; psel_obj++)
if (LWGET(OB_STATE(psel_obj» & SELECTED)
(

)

desel_obj(tree, psel_obj);
break;

color get_color(tree, DEMOPCLR);

3-28

Introduction to GEM Programming 3.6 Form Processing

else

Listing 3-14 (continued)

if (exit_obj == DEMOPSOK)

switch (psel obj) (
case DEMOPFIN:

set_pen(PEN_FINE. char_fine);
demo_shade = color;
break;

case DEMOPMED:
set_pen(PEN_MEDIUM. char_medium);
demo_shade = color;
break;

case DEMOPBRD:
set_pen(PEN_BROAD. char_broad);
demo_shade = color;
break;

case DEMOEFIN:
set_eraser{PEN_FINE, char fine,

(BYTE, *) erase_fine);
break;

case DEMOEMED:
set_eraser(PEN_MEDIUM. char medium,

(BYTE *) erase_medium);
break;

case DEMOEBRD:
set_eraser(PEN_BROAD, char broad,

(BYTE *) erase_broad);
break;

pen shade = color;
desel_obj{tree, DEMOPSOK);

desel_obj(tree, DEMOCNCL);

3-29

3.7 Work Area Maintenance Introduction to GEM Programming

3.7 Work Area Maintenance

Work area maintenance refers to three tasks, all of them initiated by a
message from the AES:

• redrawing a specified portion of the screen (WM _REDRAW)

• sizing and moving the window and switching between full and
partial sizes (WM _SIZED, WM _MOVED, and WM _FULLED)

• relocating the view area (WM _ARROWED, WM _ HSLlD, and
WM_VSLlD)

The last two tasks are required only if you select the full and size
boxes, move bar, sliders, and arrows when you create the window.

Common to all of these tasks is the use of a block of memory that
contains an up-to-date copy of the image in the screen's memory
block. In DEMO, the memory block is defined by an MFDB called
undo mfdb created during program initialization. DEMO updates the
undo - buffer from the screen block with every button and keyboard
event.

The function used to copy between buffers is the VOl vro copyfm
(Copy Raster, Opaque) function. Listing 3-15 shows the vro = copyfm
call and the preparatory routines. The sequence of events preceding
the call is as follows:

1. Copy the current work area coordinates and dimensions into a
temporary rectangle structure (rc _copy).

2. Determine the intersection of the screen area and the temporary
rectangles and put the coordinates and dimensions of the overlap
into the temporary rectangle structure (rc intersect). The min and
max routines determine which of the two- arguments provided is
smaller and larger, respectively.

3. Turn off the mouse form (graf _mouse).

4. Copy the rectangle defined in the temporary structure from the
screen memory block to the undo _ mfdb memory block (rast_ op).

5. Turn on the mouse form (graf_mouse)

3-30

Introduction to GEM Programming 3.7 Work Area Maintenance

VOID
save_work()

GREeT

Listing 3-15. Save Work Area

/* copy work_area to undo_area buffer

rc_copy(&work_area.&tmp_area);
rc_intersect(&scrn_area,&tmp_area);
graf_mouse(M_OFF, OxOl);

*/

rast_op(3, &tmp_area. &scrn_mfdb, &undo_area. &undo_mfdb);
graf_mouse(M_ON, OxOl);

VOID
rc_copy(psbox, pdbox)
GREeT *psbox;

/* copy source to destination rectangle */

GREeT *pdbox;
(

pdbox->g_x
pdbox->g_y
pdbox->g_w
pdbox->g_h

psbox->g_x;
psbox->g_y;
psbox->g_w;
psbox->g_h;

WORD
rc_intersect(pl, p2) /* compute intersect of two rectangles

*p2; GREeT *pl,
(

WORD tx, ty, tw, th;

tw min(p2->g_x + p2->g_w, pl->g x + pl->g_w);
th min(p2->g_y + p2->g h, pl->g_y + pl->g_h);
tx = max(p2->g_x, pl->g_x);
ty max(p2->g_y, pl->g_y);

p2->g_x tx;
p2->g_y = ty;
p2->g_w tw - tx;
p2->g_h th - ty;
return((tw > tx) && (th > ty));

*/

3-31

3.7 Work Area Maintenance Introduction to GEM Programming

Listing 3-15 (continued)

VOID 1* bit block level trns *1
rast_op(mode, s_area, s_mfdb, d_area, d_mfdb)
WORD mode;
GREeT *s_area, *d_area;
MFDB *s_mfdb, *d_mfdb;
(

}

WORD pxy[8];

grect_to_array(s_area, pxy);
grect_to_array(d_area, &pxy[4]);
vro_cpyfm(vdi_handle, mode, pxy, s_mfdb, d_mfdb);

VOID
grect_to_array(area, array) 1* convert x,y,_w,h to upper left x,y *1
GREeT *area; 1* and lower right x,y *1
WORD *array;
(

*array++ area->g_x;
*array++ area->g_y;
*array++ area->g_x + area->g_w - 1;
*array = area->g_y + area->g_h - ';

Redrawing: The AES sends a WM REDRAW to indicate that an area of
the screen needs to be redrawn. The area to be redrawn is defined in
the message array's word(4) through word(7) as follows:

• word(4): x screen coordinate of the upper lefthand corner
• word(5): V screen coordinate of the upper lefthand corner
• word(6): width in pixels of the rectangle
• word(7): height in pixels of the rectangle

Recall that the message also provides the window handle in word(3).

Listing 3-16 redraws the screen area defined in the message. The
do redraw function is called from the message handler (see Section
3.4-:-3 above) as follows:

do _redraw(wdw _hndl, (GREeT *)&gl_rmsg[41);

3-32

Introduction to GEM Programming 3.7 Work Area Maintenance

The values for the window handle and rectangle location and size
arguments are taken from the message itself.

An important task in redrawing the window is to determine what
portion of the rectangle provided in the message intersects with each
rectangle in the window's list of rectangles. A window gets divided
into multiple rectangles as other windows and boxes (dialog, error,
alert, and form) are displayed. Figure 3-3 illustrates the resulting
rectangles when a window is overlayed in the middle of another
window. The AES maint.ains the rectangle list.

The AES breaks up
window A into four
rectangles while
window B is
displayed in the
middle.

Figure 3-3. Window Rectangles

You get the coordinates and size of each rectangle in the list through
repeated wind get calls. Listing 3-16 shows the use of wind get to get
the first and all subsequent rectangles in the list. The AES returns a
rectangle with a width and height of zero when there are no more
rectangles on the list.

In DEMO, the redraw is performed by copying from the undo mfdb
memory block to the scrn mfdb memory block. In Listing 3-16, the
copy is done by the rast op function. See Listing 3-15 above for the
description of rast_ op and- the rc _copy and rc _intersect functions.

3-33

3.7 Work Area Maintenance Introduction to GEM Programming

Listing 3-16. Redrawing a Portion of the Screen

VOID
do_redraw(wh, area) /* redraw specified area from undo bfr */
WORD wh;
GREeT *area;
(

GREeT
GREeT

box;
dirty_source, dirtY_dest;

wind_get(wh. WF_FIRSTXYWH, &box.9_x, &box.9_y, &box.9_w, &boX.9_h);
while (box.9_w && bOX.9_h)
{

}

if (rc_intersect(area, &box»
{

if (wh == demo_whndl)

rc_copy(&box, &dirty_dest);
if (rc_intersect(&work_area, &dirty_dest»
{

dirty_source.9_x = (dirtY_dest.9_x - work_area.9_x)
+ undo_area.9_x ;

dirty_source.9_y = (dirty_dest.9_y - work_area.9_Y)
+ undo_area.9_y;

dirty_source.9_w = dirty_dest.9_w;
dirty_source.9_h = dirty_dest.9_h ;
rast_op(3, &dirty_source, &undo_mfdb,

&dirty_dest, &scrn_mfdb);

The graf mouse function is called first to turn off the mouse during
the redraw and then to turn it back on. 11 you do not turn off the
mouse and it is in the redraw' area, it is overwritten. Moving the
mouse subsequently leaves a hole on the screen.

3-34

Introduction to GEM Programming 3.7 Work Area Maintenance

Sizing, Moving, and Switching: The user can move a window (drag
the title bar down and to the right), size it (drag the size box up and
to the left), and switch between full and partial views. The AES
reports these user actions to the application in the form of WM _SIZED,
WM MOVED, and WM FULLED messages, respectively. The WM SIZED
and-WM MOVED messages provide the window handle, the requested
location,- and the requested height and width. The WM _FULLED
message contains the window handle alone.

You change the window size and location with the wind set function.
Besides the size and location, you also use wind set to change the
title and information bar contents, the slider location and size, and the
top window. For WM SIZED and WM MOVED, you use wind set as
follows: - - -

• WM SIZED: Set the size of the current window and the slide bar
size and location. The window location remains the same .

• WM MOVED: Set the location of the current window. The window
size remains the same.

Listing 3-17 shows DEMO's WM SIZED and WM MOVED message
responses. The gl rmsg array contains the message contents. In the
WM SIZED case, the wind calc function is used first to get the location
and-size of the application window's work area alone and a second
time to get the entire window's size and location, with the window
control areas included. The align(x) function forces word alignment for
the column position. The set work function orients the undo mfdb
view area to the current window work area. (see Listing 3-19 below
for the set_work description).

Note: Use the align function or an equivalent when program
performance is more important than exact window placement. The best
performance results when you "snap" to word boundaries.

3-35

3.7 Work Area Maintenance Introduction to GEM Programming

Listing 3-17. WM_SIZED and WM_MOVED Message Responses

case WM_SIZED:
wind_calc(l, OxOfef, gl_rmsg[4], gl_rmsg[5], gl_rmsg[6],

gl_rmsg[7] , &work.g_x, &work.g_y, &work.g_w,
&work.g_h) ;

work.g_x = align_x(work.g_x);
work.g_w = align_x(work.g_w);
wind_calc(O, OxOfef. work.g_x. work.g_y, work.g_w, work.g_h,

&gl_rmsg[4], &gl_rmsg[5] , &gl_rmsg[6] , &gl_rmsg[7]);
wind_set(wdw_hndl. WF_CXYWH. gl_rmsg[4].

gl_rmsg[5] , gl_rmsg[6], gl_rmsg[7]);
set_work(TRUE) ;
break;

case WM_MOVED:
gl rmsg[4] = align_x(gl_rmsg[4]);
wind_set(wdw_hndl, WF_CXYWH, align_x(gl_rmsg[4]) - 1,
gl_rmsg[5], gl_rmsg(6]. gl_rmsg[7]);
set_work(FALSE);
break;

Listing 3-18 shows DEMO's response to a WM FULLED message. The
argument passed to this routine is the window -handle provided in the
message. As with WM SIZED and WM MOVED, you use wind set to
redimension the window. However, before you redimension a window,
you must determine whether to display the full or the reduced size.

As shown in Listing 3-18, you use the wind get function to determine
the toggle status of the full box by comparing the coordinates of the
following windows:

• WF CXYWH: current window
• WF _PXYWH: previous window
• WF FXYWH: full window

The current window location and size is set by each wind set call that
specifies the W_CXYWH input argument (see Listing 3-17). The AES
automatically keeps track of the full and previous window location and
size.

3-36

Introduction to GEM Programming 3.7 Work Area Maintenance

Listing 3-18. WM_FULLED Message Response

VOID
do_full(wh)
WORD wh;
(

1* make window either full size or return
1* to previous shrunken size

*1
*1

}

·GRECT
GRECT
GRECT

prev;
curr;
full;

9raf_mouse(M_OFF,OxOL);
wind get(wh, WF_CXVWH, &curr.9_x,
wind_get(wh, WF_PXVWH, &prev.9_x,
wind_get(wh, WF_FXVWH, &full.9_x,
if (rc_equal(&curr, &full))
(

&curr.9_Y, &curr.9_w, &curr.9_h);
&prev.9_Y, &prev.9_w, &prev.9_h);
&ful I .9_Y, &full .9_w, &full.9_h);

1* is full now so change*1
1**1 1* to previous *1
wind_set(wh, WF_CXYWH, prev.9_x, prev.9_Y, prev.9_w, prev.9_h);
rc_copy(&save_area, &undo_area);
set_work(TRUE);

else
1* is not full so make *1

1**1 1* it ful I */
rc_copy(&save_area, &undo area);
wind_set(wh, WF_CXYWH, ful I .9_x, full.9_y, full.9_w, ful I .9_h);
set_work(TRUE);

Changing the View Area

The user clicks on an arrow box, clicks on the scroll bar, or drags the
vertical or horizontal slider to change the view area. The AES sends a
message to the application to indicate that a view area change has
been requested. The information provided in the messages is as
follows:

3-37

3.7 Work Area Maintenance Introduction to GEM Programming

• WM_ ARROWED: A number indicating the arrow box or scroll bar
location clicked· on as follows:

o = page up (scroll bar above slider)
1 = page down (scroll bar below slider)
2 = row up (up arrow)
3 = row down (down arrow)
4 = page left (scroll bar left of slider)
5 = page right (scroll bar right of slider)
6 = column left (left arrow)
7 = column right (right arrow)

The amount of view area change equivalent to a page, row, or
column selection is program defined .

• WM_ HSLlD: A number in the range 1 to 1000 indicating the new
location of the horizontal slider's left edge where

1 = the leftmost position
1000 = the rightmost position

• WM _ VSLlD: A number in the range 1 to 1000 indicating the new
location of the vertical slider's upper edge where

1 = the top position
1000 = the bottom position

Once you get the message, you have to interpret the data, reset the
slider positions to reflect the portion of the window selected, and
change the view area. You use the wind set function to change slider
location and size. To change the view area, DEMO calls vro _ cpyfm to
copy the new view area from the undo mfdb memory block to the
screen's memory block. -

Listing 3-19 shows how DEMO interprets the data and changes the
slider location and size and view area. Listing 3-20 shows the
set_work and restore_work routines called in Listing 3-19.

3-38

Introduction to GEM Programming 3.7 Work Area Maintenance

Listing 3-19. Arrow and Slider Message Responses

case WM_ARROWED: /* arrow or scroll bar clicked */
switch(gl_rmsg[4])
(

case WA_UPPAGE:
undo_area.g_y
break;

case WA_ONPAGE:
undo_area.g_y += undo_area.g_h;
break;

case WA_UPLINE:
undo_area.g_y
break;

case WA ONLINE:

max(undo_area.g_y - VSCALE(16), 0);

undo_area.g_y += VSCALE(16);
break;

case WA_LFPAGE:
undo_area.g_x
break;

case WA_RTPAGE:
undo_area.g_x += undo_area.g_w;
break;

case WA_LFLINE:
undo_area.g_x
break:

case WA_RTLINE:
undo_area.g_x += 16:
break:

set_work(TRUE);
restore_work():
break;

case WM_HSLIO: /* horizontal slider dragged */
undo_area.g_x align_x(UMUL_DIV(undo_mfdb.fwp - undo_area.g_w,
gl_rmsg[4], 1000));
set_work(TRUE):
restore_work():
break;

case WM_VSLID: /* vertical slider dragged */
undo_area.g_y = UMUL_DIV(undo_mfdb.fh - undo_area.g_h,
9 1 rmsg [4] , 1000) ;
set_work(TRUE);
restore_work();
break:

3-39

3.7 Work Area Maintenance Introduction to GEM Programming

Listing 3-20. Updating the undo _ mfdb, Sliders, and Screen

VOID
set_work(slider_update)
BOOLEAN slider_update;
(

1* update undo area, clamping to page *1
1* edges, and updt sliders if req'd *1

WORD i ;

wind_get (demo_whndl • WF_WXYWH.
&work_area.g_x. &work_area.g_y.
&work_area.g_w. &work_area.g_h);

undo_area.g_w work_area.g_w;
undo_area.g_h work_area.g_h;
1**1 1* clamp work area to page edges *1
undo_area.g_x align_x(undo_area.g_x);
if «i = undo_mfdb.fwp - (undo_area.g_x + undo_area.g_w») < 0)

undo_area.g_x += i;
if «i = undo_mfdb.fh - (undo_area.g_y + undo_area.9_h» < 0)

undo_area.g_y += i;

if (slider_update)

wind set (demo_whndl , WF_HSLIDE, UMUL_DIV(undo_area.g_x. 1000.
undo_mfdb.fwp - undo_area.9_w), 0, O. 0);

wind_set(demo_whndl, WF_VSLIDE, UMUL_DIV(undo_area.g_y. 1000,
undo_mfdb.fh - undo_area.9_h). O. O. 0);

wind_set(demo_whndl, WF_HSLSIZ, UMUL_DIV(work_area.g_w. 1000,
undo_mfdb.fwp), O. 0, 0);

wind_set(demo_whndl, WF_VSLSIZ, UMUL_DIV(work_area.9_h. 1000,
undo_mfdb.fh), 0, 0, 0);

1* only use portion of work_area on screen *1
rC_intersect(&scrn_area, &work_area);
undo_area.9_w work_area.g_w;
undo_area.g_h = work_area.g_h;

3-40

Introduction to GEM Programming 3.8 Program Termination

VOID
restore_work()

Listing 3-20 (continued)

1* restore work_area from undo_area

GREeT tmp_area;

rc_copy(&work_area,&tmp_area);
rc_;ntersect(&scrn_area,&tmp_area) ;
graf_mouse(M_OFF, OxOl);

*1

rast_op(3, &undo_area, &undo_mfdb, &tmp_area, &scrn_mfdb);
graf_mouse(M_ON, OxOl);

3.8 Program Termination

Terminating a GEM application involves the following graphics-related
tasks:

• Close and delete the application's window.
• Remove the menu bar.
• Close all devices opened.
• Release the internal data structures used by the application.

Besides the graphics-related tasks, you should perform the following
operating system related tasks as required:

• Flush all output buffers.
• Release all memory allocated by the application.
• Close all open disk files.

Listing 3-21 shows the DEMO termination routine. The term_type
argument is the demo init return value. The wind update function is
used here to release control of the window because processing jumps
to demo_term from a break in the main event handler--demoO. (Recall
that the event loop begins with a wind update to take control of the
window.) -

3-41

3.9 Creating Accessories Introduction to GEM Programming

Listing 3-21. Program Termination Routine

demo_term(term_type)
WORD term_type;
{

switch (term_type) 1* NOTE: all cases fall through *1
{

}

case (0 1* normal termination */):
wind_close(demo_whndl)
wind_delete(demo_whndl);

case (3):
menu_bar(OxOL, FALSE);
dos_free(undo_mfdb.mp);

case (2):
v_clsvwk(vdi_handle);

case (1):
wind_update(END_UPDATE);
appl_exit();

case (4):
break;

3.9 Creating Accessories

You create accessories as you do applications. That is, you begin with
GEM RCS to create the object trees and then build the program with
AES and VOl functions.

For the most part, accessories and applications have the same
program components and use the same AES and VOl functions. For
example, in both application and accessory initialization, you use the
following functions:

• appl_init to initialize the internal data structures
• graf _handle to get the VOl handle of the current screen

workstation
• v _ opnvwk to initialize the virtual workstation
• wind_get to find out the window 0 location and dimensions.

However, in a desk accessory, you also call menu register to add the
accessory's name to the accessory menu and you do not typically
create and open the window. Creating and opening the window are

3-42

Introduction to GEM Programming 3.9 Creating Accessories

usually performed when the accessory receives the AC _OPEN message.

Besides initialization, accessories differ in the following ways:

• Event handling: Accessories do not generally exit the event loop.
Instead, they run "forever." The main event loop should be an
evnt msg call waiting for an AC OPEN message. All other forms of
input should be disabled to -avoid conflict with the current
application. Use the evnt multi call to get mouse, button, and
keyboard input only after the AC _OPEN has been received .

• Message handling: Accessories must support two messages not
supported by applications:

- AC _OPEN: Tells the accessory to display its window and start
execution.

- AC CLOSE: Tells the accessory that the current application
has closed, the screen is about to be cleared, and the
window data structures will be cleared. (AC _CLOSE is not the
accessory's terminate message.) Typically, you initialize the
accessory's handle in response to this message. (The user
might have closed the application before closing the
accessory.)

Because the window data structures are cleared when an
application terminates, you should create the accessory window
with each AC OPEN message. In addition, when you get a
WM_CLOSE message, you should not terminate the accessory.
Instead, close and delete the window and make the evnt msg call,
waiting for another AC _OPEN message. -

Note: If an accessory is on-screen but covered completely by
another window, the GEM Desktop manual instructs the user to
select the accessory through the menu to get it back on-screen.
This results in two successive AC OPEN messages without an
interceding WM CLOSE message. -You should interpret this
AC _OPEN as the - equivalent of a WM _TOPPED message and not
create another accessory window.

3-43

3.9 Creating Accessories Introduction to GEM Programming

• Termination: Accessories do not normally terminate. When the
close box is clicked on, you close and delete the window, but
there is no need to close the virtual workstation (v clsvwk) or exit
the application (appl_ exit). -

Note: If you do have an exit condition in an accessory, be sure to
call the menu unregister function in the termination routine to
remove the name from the accessory drop-down menu .

• Execution: You cannot execute an accessory; therefore, you
cannot debug it. To debug an accessory, you must compile and
link the program as an application.

To accommodate the differences between applications and
accessories, use conditional statements to select application-specific
routines for debugging purposes and the accessory-specific routines
when debugging is complete. The sample accessory HELLO.C
demonstrates this technique.

HELLO.C displays a small window with the message, "Hello World."
You control whether HELLO.C is compiled as an application or an
accessory by defining the DESKACC value as 0 (application) or 1
(accessory). The value of DESKACC· controls program flow in a series
of if statements. For example, Listing 3-22 shows the if statement
used in the HELLO event handler.

3-44

Introduction to GEM Programming 3.9 Creating Accessories

hello()
{

BOOLEAN done:

done = FALSE
whi le(!done
(

Listing 3-22. HELLO Event Handler

ev_which = evnt_mesag(ad_rmsg) 1* wait for message *1
wi nd_update (BEG_UPDATE) 1* begin window update *1
done = hndl_mesag(); 1* message type handler *1
wind_update(END_UPDATE) 1* end window update *1

#if DESKACC

#endif
}

done = FALSE; 1* never exit loop for desk accessory *1

In this listing, when DESKACC is TRUE, HELLO is an accessory and the
while loop never completes. When DESKACC is FALSE, HELLO is an
application and the while loop is satisfied when done equals TRUE.
HELLO message handling, termination, and initialization also
demonstrate techniques for switching between application and
accessory with DESKACC.

End of Section 3

3-45

Index

A

AC _CLOSE, 3-43
AC _OPEN, 3-43
ACC file, 2-10
Accessories, 2-4

closi n9, 3-44
menu _ unregister, 3-44

AES, 1-2
converting titles, 1-2
creating desktop window, 1-2
kernel, 2-2
menu and· alert buffer, 2-4
mouse and button input, 1-2
opening virtual workstation,

1-2
Screen Manager, 2-2

Alert box
components, 1-10

Alert buffer, 2-4
Allocating memory

when to, 3-5
APP file, 2-10
appl_exit, 3-41
appl_init, 3-3
Application Environment

Services (see AES), 1-2
Application Library

function summary, 1-13
Application space, 2-5

driver allocation, 2-5
font allocation, 2-5

minimum, 2-5
resource file allocation, 2-5
temporary memory allocation,

2-5
Application window, 1-4

arrows, 1-5
close box, 1-5
components, 1-5
control areas, 1-5
creating, 1-4
dialog box size, 1-8
full box, 1-5
full box switching, 3-36
information components, 1-4
information line, 1-4
limits, 1-4
move bar, 1-5
overlapping, 1-4
rectangle list, 3-33
removing, 1-4
scroll bar and slider, 1-5
selecting control areas, 1-4
selecting scroll bar and slider,

1-7
size box, 1-5
size of, 1-3, 1-4
title bar, 1-4
when to release control over,

3-3
when to take control over, 3-3
work area, 1-7
work area maintenance, 3-30

Index-1

work area size, 1-4
work area size and location,

1-7
Applications

before coding, 3-1
extension, 2-10
initialization tasks, 3-3
porting, 2-9

Arrow box message, 3-38
Arrows, 1-5
Aspect ratio, 2-2, 2-8

affect on output, 2-8
compensating for, 2-8

ASSIGN.SYS, 2-1, 2-10
device 10, 2-1
driver file extension, 2-10
font file extension, 2-10

Attribute Functions, 1-19
fill style and color, 3-12
lines, 3-12
text, 3-18
use of, 3-12

B

Bit image objects, 1-10
transformation, 3-5

Button event
click definition, 3-12
number of clicks reported,

3-12
Button handling, 3-12

Index-2

c

Character output, 3-19
Click, 3-12
Clipping, 3-12
Close box, 1-5
Coordinate systems, 2-7

selecting, 2-7
Copy mode, 1-20
Current window

setting coordinates, 3-36

o

Desk accessories, 2-4
displaying name, 2-4
event handling, 3-43
extension, 2-10
initia'lization, 3-42
loading, 2-4
menu title, 2-4
message handling, 3-43
program execution, 3-44
program termination, 3-44
registering name, 3-42

Desktop window
direct output to, 1-3
getting size, 3-8
handle, 1-3
height and width, 1-4
menu bar, 1-2
origin point, 1-4
work area, 1-3

Device attributes, 1-18
Device drivers, 2-1

in memory, 2-5

selection, 2-1
Device ID, 2-1
DFN file, 2-10, 3-2

when needed, 3-2
Dialog box

as form, 1-8
components, 1-10
modal, 1-8
modeless, 1-8
size, 1-8
types of, 1-8

Dispatcher, 2-3
allocating CPU time, 2-3
dispatch events, 2-4
not-ready list, 2-4
ready list, 2-4

Dispatching, 2-3
Driver file extension, 2-10
Driver space allocation, 2-5
Drop-down menu

E

components, 1-10
redrawing screen, 1-2

Escape functions, 1-20
Event Library, 1-13

events supported, 1-13
function summary, 1-13
interprocess messages, 1-13
message system, 1-13

evnt_ button, 3-9
evnt_ keybd, 3-9
evnt_ mesag, 3-9

in HELLO, 3-44
evnt_ mouse, 3-9

evnt_multi, 3-10
button handling loop, 3-12
in button handler, 3-14
main event loop, 3-10
output array, 3-10
return code, 3-10

evnt_ timer, 3-9
Extended Graphics Library

function summary, 1-17

F

File Selector Library
function summary, 1-16

Files
reserved, 2-10

FNT file, 2-10
Font file extension, 2-10
Fonts, 2-5
Form Library

function summary, 1-15
form_alert, 3-3, 3-8
form_button, 3-24
form_center, 3-27
form_dial, 3-27
form_do, 3-24
form _ keybd, 3-24
Forms

automatic processing, 3-24
determining exit button, 3-28
display, 3-22
processing, 3-22
removal, 3-22
resetting selected objects,

3-24
retrieving data, 3-24

Index-:

Full box, 1-5
Function Libraries, 1-13

G

GODS, 2-5
GEM file, 2-10
GEM ReS, 1-11

definition file extension, 2-10
editable resource file, 2-10
files produced, 3-2
include file, 3-2
resource file extension, 2-10

graf_handle, 3-3
getting screen handle, 3-4

graf_ mkstate, 3-18
graf_mouse

during initialization, 3-3
Graphics Device Operating

System, 2-5
Graphics Library

function summary, 1-15

H

Handle, 1-18

Icons
transformation, 3-5

Image files, 2-10
IMG file, 2-10
Information line, 1-4

contents, 1-4

Index-4

length, 1-4
Input Functions, 1-20

modes, 1-20
Inquire functions, 1-20
Items (in menus), 1-2

K

Kernel, 2-2
Keyboard event, 3-18

L

Library, 1-2
Line attributes, 3-12
Loading fonts, 2-5

M

Memory Form Definition Block
(see MFDB), 3-5

Menu and alert buffer, 2-4
size, 2-4

Menu bar, 1-2
components, 1-10
controlling contents, 1-3
drop-down menu, 1-2
items, 1-2
reporting selection, 3-20
resetting title, 3-20
titles, 1-2

Menu Library, 1-3
function summary, 1-13

Menu processing, 3-20
menu_bar, 3-8

clearing current tree, 3-41
menu_tnormal,3-20
menu _ unregister, 3-44, 3-42
Message array, 3-16
Message system, 1-13
Messages

application to itself, 1-13
between application and

accessory, 1-13
events, 3-9
format, 3-16
interapplication, 1-13
MN_SELECTED, 3-16
WM_CLOSED,3-16
WM_FULLED, 3-16
WM_REDRAW, 3-16
WM _TOPPED, 3-16

Metafile, 2-10
extension, 2-10

MFDB
initialization, 3-5

MN _SELECTED, 3-16
Mouse driver, 2-5
Mouse event, 3-15

changing mouse form, 3-15
from menu bar, 3-15
return code, 3-15

Mouse form
in menu bar, 1-2

Move bar, 1-5

N

NDC (see Normalized Device
Coordinates), 2-7

Nil, 3-22

Normalized Device Coordinates,
2-7

origin point, 2-7
transformation, 2-8

Not-ready list, 2-4

o

objc _draw, 3-27
Object library

function summary, 1-15
OBJECT Structure, 1-10, 3-23

getting address, 3-22
ob _flags, 3-23
ob _head, 3-23
ob _height, 3-23
ob _next, 3-23
ob _spec, 3-23
ob _state, 3-23
ob _tail, 3-23
ob_type, 3-23
ob _width, 3-23
ob_x, 3-23
ob_y, 3-23

Object transformation, 3-5
Object trees, 1-11

components, 1-11
creating, 1-11, 3-1
displaying, 1-11
in RSC file, 3-2

Objects, 1-10
illustration of types, 1-10
index, 3-2
index number, 1-11
linking, 1-11
naming, 3-2

Index-!

object tree, 1-11
Origin point, 2-7
OUT" file, 2-10
Output attributes, 1-18
Output Functions, 1-18

p

attributes, 1-19 .
getting attributes, 1-20
setting attributes, 1-19

Panel
components, 1-10

Picture elements, 2-7
Pixel dimensions, 2-7

affect, 2-8
Pixels, 1-4, 2-7
Porting applications, 2-9

R

Raster Coordinates, 2-7
origin point, 2-7

Raster operation functions, 1-20
RC (see Raster Coordinates),

2-7
RCS (see GEM RCS), 1-11
Ready list, 2-4
Rectangle clipping, 3-12
Rectangle list, 3-33
Redraw message, 3-32
Removing fonts, 2-5
Request mode, 1-20
Reserved files, 2-10
Resource file

Index-6

extension, 2-10
Resource Library

function summary, 1-16
RSC file, 2-10
rscr -,oad, 3-3
RSH file, 2-10
rsrc gaddr

s

getting form root address,
3-25

getting root dimensions, 3-22
menu tree, 3-8
object tree, 3-6

Sample mode, 1-20
SCRAP files, 2-10
Scrap Library

function summary, 1-16
Screen device

opening, 1-18
required coordinate system,

2-7
Screen driver

system font, 2-5
Screen Manager, 2-2

form processing, 2-3
user input, 2-3

Screen redraw, 1-2
Scroll bar, 1-5
Shell Library

function summary, 1-17
Size box, 1-5
Slider, 1-5

horizontal message, 3-38
relationship to view area, 1-7

setting location, 1-7
setting size, 1-7
vertical message, 3-38

SYS file, 2-10
System font, 2-5
System memory allocation, 2-2

T

Temporary memory, 2-5
Text attributes, 3-18
Titles (in menus), 1-2

conversion, 1-2
resetting, 3-20

Title bar, 1-4
contents, 1-4
length, 1-4

u

undo _ mfdb, 3-30
size, 3-5

User input, 1-13

v

v _ clswk, 3-41
v _gtext, 3-19
v_opnvwk, 3-3
v _pline, 3-14
VDI, 1-17

Attribute functions, 1-19
compensating for aspect ratio,

2-8
Escape functions, 1-20

Input functions, 1-20
Inquire functions, 1-20
Output functions, 1-18
Raster operation functions,

1-20
selecting coordinate system,

2-7
transforming coordinates, 2-8
Workstation Control functions,

1-18
View Area, 1-7

changing, 3-37
related messages, 3-37
scroll bar and slider, 1-7
size of, 1-7

Virtual Device Interface, 1-17
Virtual workstation

opening, 1-18
vr _ trnfm, 3-6
vro _ copyfm, 3-30
vro _ cpyfm, 3-32

updating view area, 3-38
vsf_color,3-13
vsf_interior, 3-13
vsl_color,3-13
vSI_ type, 3-13
vst_ alignment, 3-18
vst_ color, 3-18
vst_ height, 3-18

return values, 3-18
vst_point, 3-19
vswr _mode, 3-13, 3-18

for text, 3-18

Index-~

w

wind_calc, 3-35
wind_close, 3-41
wind_create, 3-8
wind_delete, 3-41
wind_get, 3-33

current window, 3-36
first rectangle, 3-33
full window, 3-36
getting desktop window work

area, 3-8
next recta ngle, 3-33
previous window, 3-36
rectangle list, 3-33
WF _ CXYWH, 3-36
WF _FIRSTWXYWH, 3-33
WF _FXYWH, 3-36
WF_NEXTWXYWH,3-33
WF _PXYWH, 3-36
work area of current window,

3-39
wind set

changing window location,
3-35

changing window size, 3-35
current window, 3-35
set title bar, 3-8
setting horizontal slider

location, 3-39
setting horizontal slider size,

3-39
setting top window, 3-17
setting vertical slider location,

3-39
setting vertical slider size,

3-39

Index-8

WF CXYWH, 3-35
WF _ HSLlDE, 3-39
WF _ HSLSIZ, 3-39
WF _ VSLlDE, 3-39
WF _ VSLSIZ, 3-39

wind_update
main event loop, 3-10
taking control of window, 3-3

Window, 1-2
Window Control Areas, 1-5

arrows, 1-5
close box, 1-5
customary responses, 1-5
full box, 1-5
move bar, 1-5
scroll bar and slider, 1-5
selecting, 1-4, 3-8
size box, 1-5

Window Library, 1-4
function summary, 1 - 1 6

WM ARROWED, 3-38
WM CLOSED, 3- 1 6
WM_FULLED, 3-16, 3-36
WM _ HSLlD, 3-38
WM_MOVED,3-35
WM REDRAW, 3-16
WM REDRAW

data, 3-32
WM _SIZED, 3-35
WM TOPPED, 3- 1 6
WM _ VSLlD, 3-38
Work area

desktop window, 1-3
memory form, 3-30
moving, 3-35
output functions, 1-7
rectangle intersection, 3-33

redrawing, 3-32
saving screen, 3-30
size and location, 1-7
size of, 1-4
sizing, 3-35
switching, 3-35
user input management, 1-7

Workstation, 1-18
getting characteristics, 1-18
handle, 1-18
opening, 1-18
setting attributes, 1-18

Workstation control functions,
1-18

World coordinate space, 1-7
in DEMO, 3-5
view area, 1-7

Writing mode, 1-19
options, 3-12

Index-9

